Probabilistic Controlled Airspace Infringement Tool

Yousra S. AL-Mathami
College of Engineering, Mathematic and Physical Sciences
University of Exeter

June 2012

Submitted by Yousra Saud AL-Mathami, to the University of Exeter as a thesis for the
degree of Masters of Philosophy in Computer Science, June 2012.

This thesis is available for Library use on the understanding that it is copyright material
and that no quotation from the thesis may be published without proper acknowledgement.

| certify that all material in this thesis which is not my own work has been identified and
that no material has previously been submitted and approved for the award of a degree
by this or any other University.

Abstract

A current ground based safety net called Controlled Airspace infringement Tool (CAIT) is
used by Air Traffic Controllers (ATCs) in the UK. It warns them if any aircraft within
uncontrolled airspace penetrates the Controlled airspace (CAS) without an advance
clearance from the ATC. This penetration or ‘Infringement’ is considered as a major concern
to ATCs where it may cause a possible conflict or mid-air collision. A conflict is an event
which one aircraft loses its minimum separation to another. A current deficiency of CAIT is
that it only warns ATCs if the aircraft has already infringed CAS, this gives the ATC minimum

time to react and avoid any conflict.

In this research, we investigate a model which warns ATCs of possible future
infringements accurately. We implement two Kalman filters (KF) as our tracking tool, one for
each flight mode: constant velocity and constant acceleration each of which has its state
error covariance. Where the state error covariance measures the uncertainty in the
aircraft’s estimated position, and is therefore important for accurately predicting the
aircraft future position and since each aircraft has its own characteristic and journey type, a
single parameterisation of the state covariance for all aircraft is unsuitable. Therefore, we
learn these covariances in an online fashion at each time step to predict the future
uncertainties more accurately. Given the two Kalman filters predictions and their error
covariances, we use two methods to find the probability of infringement of CAS. The first
method, proposed by Macdonald (2000), is called the shortest distance method. We extend
this method to be able to find the probability of infringement when the prediction location
is near a CAS corner by combining it with Monte Carlo sampling. A hybrid method is
introduced to retain the efficiency of the shortest distance method with the accuracy of the

Monte Carlo sampling.

We also used the switching Kalman filter (SKF) method proposed by Murphy (1997) to
choose between the most appropriate Kalman filter at each time step. On testing on real
tracks, the SKF was found to give superior predictions of the aircraft location, permitting

better estimates of the probability of CAS infringement to be made.

Acknowledgements

| would like to thank NATS for providing us with the data which aided us throughout our

research.

| specially would like to thank Richard Everson and Jonathan Fieldsend for their help and
support and for providing me with the knowledge for which a student would wish to gain
from his educator. Thank you mom and dad for your long distant support which made my

study in Exeter feels like home.

Table of Contents

1

T} oo [V 4 o] o IR PP PPP 7
1.1 OVEIVIBW ettt e ettt ettt e e e e e e e e e e eeeeeteteeeeebe b sa s e e eeeaeaaaens 7
1.2 ReSEArCh Problem ... e 7
I T O] 1Tl 4 V=T PP PPP SRR 8
1.4 RESEAICN STIUCTUIE...ccii ittt e e s e e e s st e e e e s s sbraeeeeas 8

2ol 4= { o TUT o Vo IO PP PPP 9
D R |] o - [T OSSO PP PP PPPPPPPUPTPPPPPRPRt 9
P A ¥ o - PP PPPPR 10
2.3 Current Infringement DEtECLIONcciiiviiiiiiiiiiriiiec e 12
2.4 Hidden MarkoV MOEISooiiiiiiiiieeei et e e s s e e s s sbaae e e s s s naaaees 13

2.4.1 Discrete hidden states with discrete 0bservations........ccccovecveeiiiiciieee s 15

2.4.2 Forward-Backward AlgOrithmccoiiiiiiiiiie e 17

2.4.3 HMM learning (Baum-Welch AlIgorithm)ccvvvveeiiiiiieee e, 19
2.5 Kalman Filter and SMOOThErccuuiiiiiiiiie e 20

2.5.1 2 1o €={ 01U [o KSR 20

2.5.2 Kalman Filter EQUATIONS ..ottt ettt e e e e e e e e e aaeeeeaaaeeas 23

2.5.3 Derivation of Kalman filter @rTOrs ...c..uuee ittt 25

254 Kalman SMOOTNET ..eiiiiiiiiiee e s st e e e s ebrae e e s snreeeeesans 26

2.5.5 Kalman Smoother EQUAatioNS.........ueeeiiiii ittt e e e e e 27
2.6 Literature Review on Conflict Detection......ccccvvcviiiiiiiniiiiiie e 29

Probability of INfringemMENt.........uviiiiie e 36
3.1 Current Probabilistic Infringement Detection TOOl........cccceveeiviiiiieeeiiniiiiee e, 36
3.2 Probabilistic Infringement Detection TOO!........cccvuiiiiiiriiiiiiee e 40

3.2.1 MoNte Carlo SAMPIING....ccoo e e e e e e e e e e b aaeaeaaaeeas 41

3.2.2 [NV o g o LY =Y i o Yoo H S U RSP 44
73 T €] o ol 1Yo o FOR PP PPPPR 53

Prediction With ONnliNg LEArNING......ccovvuiiiiiiiiiiiiee ettt e e s s 54
4.1 Learning Using the Expectation-Maximization Algorithmcccceevvieviiiniiiieneennns 55
4.2 Learning Model Error covariance with Different Kalman Filters.........cccccoevuvereinnnns 67

4.2.1 Constant VeloCity MOl ...uuiiii it e e e e e e 69

4.2.2 Constant Acceleration Modelueviiviiiiiiie e e 70
4.3 Further Testing on Synthetic Trackcuvivviiiieiiiiiiiiieeec e 71

43.1 Best errors for the Whole trackcc.ueeeiiiiiiie i 72

4.3.2 Best error at @ach tiMe E..eeeevviiiii e 75
4.4 Testing 0N REAI TFaCKSceiiiiiiiiiiiiiiiiieee ettt re e e s s siaae e e e e naes 78

7

44.1 CoONSEANT VEIOCITY oottt e annraaaeees 81

4.4.2 CoNStaNt CCEIEIATION ..ouviiiiiie et s 87
A5 CONCIUSION...eiiiiiitiiit ettt st e e e e e bt e e e s be e e e bbeeeenneens 92
SWItChiNg KalmMan Filter ..cceeiiiiiiiee et s s e e e e s 94
5.1 Why The Switching Kalman Filtercoviiiiiiiiiiiiiiiieec e 95
5.2 IMPIemMENTAtION oo e e s s re e e e e eaes 98
5.2.1 (0] Y=o 1 1Y/ TS UUURR 98
5.2.2 SWITCNING PrOCESS. ... ittt e ettt e e e e e e et e e e e e e e e e e s s anbbaaaeeaaaeeeeeseansrsaaeees 99
R T =1 o o TS OO PP PP PP PPPPUPR 104
5.4 CONCIUSION. ettt et e s e st e e s s e e e ebeeeeeanes 113
CONCIUSION .ttt st e e st e e e bt e e e sbb e e e ssareeeenneeenans 114
6.0 SUMIMIAIY ittt ettt e s e e e e e e e e e e e ettt eeeeee b s e e e e e e eeaeeeeeeneeaees 114
6.2 Future Work Recommendationcoocueiiiiiieiiiiieiiieeceeeeeee e 116
BIDHOGIAPNY oo s e e s re e e e s e aaes 117

List of Common Abbreviations

ATC Air Traffic Controller

CA Constant Acceleration

CAS Controlled Airspace

cv Constant Velocity

EM Expectation Maximisation Algorithm
HMM Hidden Markov Model

KF Kalman Filter

CAIT Controlled Airspace Infringement Tool
PSR Primary Surveillance Radar

SKF Switching Kalman Filter

SSR Secondary Surveillance Radar

UCAS Uncontrolled Airspace

1 Introduction

1.1 Overview

It is the responsibility of NATS to monitor and to manage the flow of the aircraft in the
United Kingdom airspace. The UK airspace is divided into seven classes; five of them
correspond to controlled airspace (CAS) and two to the uncontrolled airspace (UCAS). These
five classes are being controlled by the Air traffic controllers (ATCs) and therefore, for any
aircraft flying within or about to fly into CAS, the communication between that aircraft and
the ATC is essential to avoid any conflict. Where a conflict is an event in which one aircraft
loses its minimum separation by another aircraft. ATCs use screens to monitor the aircraft
locations which are being collected by radars placed all over UK. ATCs also monitor aircraft
outside the controlled airspace using another tool in conjunction with radars, called
Controlled Airspace Infringement detection Tool (CAIT) to detect any infringements. An
infringement occurs when an unauthorised aircraft penetrates CAS without the ATC’s
clearance. These infringements are a major concern to ATCs, in which it could cause a

possible conflict and maybe a mid-air collision.

1.2 Research Problem

Controlled airspace infringements are a major safety concern to ATCs and aircraft pilots
which can cause two main issues: one is the possibility of a conflict, where an aircraft loses
its minimum separation. Another is that, these infringements cause disruption to flight
operations by adding more workload on the pilot and the ATC such as changing the flight
routes and finding a safe maneuver to avoid a collision. As a result, CAIT was developed to
detection any infringements which occur. However, it only warns the ATC if it has already

infringed the CAS which gives the ATC less time to resolve any possible conflict that may

7

arise. It would be better for the ATC to have an early warning to resolve a future conflict in

advance and maintain the flow of aircraft in the CAS in the same time.

1.3 Objectives

The aim of this research is to investigate a possible model that warns ATC well in advance

of any possible future infringements. In order to do that, we will examine the following:

1. Implementing an accurate tracking tools for different models
2. Review and extend available probability of infringement methods
3. Learning the models’ error covariance and test them on synthetic track

4. Examining a switching mechanism to switch between the proposed models

Given the best errors which fit the model, we will find the probability of future

infringements using real tracks and CAS boundaries.

1.4 Research Structure

In chapter 2 we will present an in depth background information related to the airspace,
radars, current CAIT and the tools we use to help us build the probabilistic infringement
detection tool. Following that we will provide a literature review on conflict detections
methods. Chapter 3, we will examine the current probabilistic CAIT and extend it by using
the Monte Carlo Sampling in conjunction with it to create a hybrid model which will able to
predict future infringements more accurately. In chapter 4, we will implement a learning
tool proposed in (Shumway and Stoffer,1997) which finds the best error which fit the model.
Given the models and their errors, we discuss in chapter 5 a switching mechanism proposed
in (Murphy, 1997) to switch between the models. Chapter 6, we will provide a discussion

and some recommendations for more research work.

2 Background

The research objective is to implement a probabilistic infringement detection tool
which predicts future infringements accurately; therefore, it is essential to give background
information related to this research such as what is airspace and who controls it, the types
of radars and the current infringement detection tool and its limitation. The tracking tool we
will use to predict and estimate the aircraft locations is the Kaman filter which we will
review it in this chapter. Similar to the Kalman filter, is the Hidden Markov Model (HMM)
which we will use it to learn the hidden states as we will see later in this chapter. This is

then followed with a literature review on conflict detection and, finally, a summary.

2.1 Airspace

Historically as the number of airplanes increased it became essential to manage their
flow and maintain their separation from each other in the air, resulting in the establishment
of air traffic services. These services are provided by air traffic controllers (ATCs) for aircraft
flying within the controlled airspace (CAS). These aircraft are supervised by the ATC and
should follow their instructions as long as they are inside the CAS. Any aircraft flying in an
uncontrolled airspace (UCAS) is not subject to ATC communication and the pilot should take
full responsibility for his/her safety. Within controlled airspace, the ATCs monitor the air
traffic flow and use separation rules to avoid any conflict or mid-air collision. A conflict is an
event for which an aircraft loses its minimum separation. Typical minimum separations are
5 nautical miles horizontally and 1000 feet vertically, although these may be modified
according to the particular expected behaviour of the aircraft. For example, near a terminal
where aircraft are about to land, the separation may be 1 nautical mile (nm) horizontally

and 500ft vertically.

Airspace is divided into 7 classes; 5 corresponding to CAS and 2 to UCAS. The UCAS
classes are available for the civil users such as light aircraft, helicopters and hot air balloons
...etc and they extend from the ground up to 3000 ft or to the base of CAS if there is one
defined above UCAS. Pilots flying within UCAS can receive flight information from the ATC if
requested. In this research, we are interested in tracking aircraft within these UCAS zones.
Figure 2.1 shows the 5 controlled airspace classes over the UK; areas not coloured

corresponds to UCAS.

Airnwgys in United Kingdom airspace, showing how they connect

Figure 2.1: UK controlled Airspace classes: Source: (Hayward & Howell, 2008)

It is very important to detect and if possible predict where an aircraft in UCAS infringes CAS;
the system that ATCs use to monitor aircraft locations in UCAS is radar which will be

discussed next.

2.2 Radar

Radar is an object detecting system mainly used by ATCs to detect aircraft in the air or

on the ground. There are two types of radar that are used by the ATCs, the primary

10

surveillance radar (PSR) which only detects the location of the aircraft with imprecise
altitude; and the secondary surveillance radar (SSR) which provides more information to the
ATC such as altitude and identity. The SSR however, only operates when the aircraft is
equipped with a transponder, which makes it a dependant system that needs to
communicate with that aircraft’s transponder in order to provide the extra information. So
aircraft with no transponders (light aircraft) can therefore only be detected by PSR but not
the SSR. As a result, ATC uses the PSR in conjunction with the SSR to detect and identify the
aircraft. Figure 2.2 shows one of the radars used by ATCs at London Heathrow Airport. Both

radars SSR and PSR are also placed in different locations around the UK:

Figure 2.2: Heathrow airport radar. Source: wikipedia

Since most aircraft that infringe CAS are not equipped with transponders, they can only be
detected by the PSR. This tells the ATC very little about that aircraft altitude, flight plan and
their identity; therefore, ATCs require a safety net that warns them whenever an
infringement occurs. This system is called the Controlled Airspace Infringement Tool — CAIT

—and is discussed in section 2.3.

11

2.3 Current Infringement Detection

Controlled airspace infringements are a major safety concern to ATCs and aircraft
pilots which can cause two main issues: one is the possibility of a conflict, where an aircraft
loses its minimum separation. Another is that, these infringements cause disruption to flight
operations by adding more workload on the pilot and the ATC such as changing the flight
routes and finding a safe maneuver to avoid a collision. Therefore, a ground based safety
net called the Controlled Airspace Infringement Tool (CAIT) used by NATS was created in
order to warn ATCs of an infringement to the CAS by an unauthorised aircraft. This is
achieved by collecting aircraft locations within UCAS by the PSR radar every four seconds,
sending these locations to the ATC monitors and then highlighting the aircraft in different
colour when the aircraft is inside the CAS, thus raise a warning to the ATC. Figure 2.3 shows
an example of ATCs” monitor when an aircraft has infringed CAS which is highlighted in

magenta.

Figure 2.3: Radar monitor showing infringed aircraft in magenta instead of green

The flaw with the CAIT system is that it only warns ATCs if and only if, the aircraft has

already infringed the CAS and therefore, could cause a possible conflict with another

12

authorised aircraft flying inside it. It does not warn ATCs for possible future infringements by
aircraft outside CAS. To solve this problem is our research objective, which is to investigate a
possible model that warns ATC well in advance of any possible infringement in the near
future. This will help the ATC to respond to it and resolve it quickly before it could cause
further risk. In the next section we will give a brief introduction to two important tools used

in our research.

2.4 Hidden Markov Models

The Hidden Markov Model (HMM) is a powerful statistical tool used to model time series
data (Rabiner,1989). The model uses a set of observable states sequence Z to estimate the
hidden state X where each hidden state and observation is modeled by a probability

distribution. See figure 2.4

Hidden states -_::::::‘,
Observations a 6 a 6

Figure 2.4: Hidden Markov Model Transition Process

Given a set of random states x, X1, X3, X¢_1, X; from time 0 up to the current time t,

from the Markov assumption which states that the probability of the next state x;,4

13

depends only on the current state x;, this makes it a first order HMM. Therefore, the state
sequence in the HMM does not depend on the time t. Meaning, the initial state along with
states up to time t — 1 will soon be forgotten as the state sequence increases because it will

not be used in the model.

To transit from one state to another, a probability is assigned to each different state; this is

called transition probability which is defined below:

P (x4l Xt)

Also, the probability of the current observation z, depends only on the current state x; and
it is defined by the probability:

P(z| x¢)

The HMM can have two types of time series hidden states: discrete and continuous where

each type has either discrete or continuous time observations.

1. Discrete time hidden states which generate either:
* Discrete observations
* Continuous observations

2. Continuous time hidden states which generate either:
* Discrete observations

¢ Continuous observations

Figure 2.5 shows the types of the HMM hidden states and observations. The HMM with
discrete hidden states and discrete observations use the forward-backward algorithm to
estimate the hidden state given the observation. To learn the model’s parameters, the

Baum-Welch algorithm is used with discrete states and observations. The HMM however,

14

with continuous hidden states and observations use the Kalman filter for example as the
best state estimator if we assume that these states and observations are linear and normally

distributed. To learn this model’s parameters, the Expectation-Maximization algorithm (EM)

is the most suitable one to use.

Discrete
Hidden
States

Continuous
Hidden

Discrete

Observations

Continuous
Observations
Kalman Filter
EM Algorithm

Forward-

Continuous
Observations

Backward
Algorithm
Baum-Welch

algorithm

Discrete
Observations

Figure 2.5: Overall breakdown for types of HMM states and observations

In this research, we will use the HMM with discrete hidden states and continuous

observations. But for the purpose of clarifying how the HMM works, we will review the most

widely used HMM type which is the discrete hidden state and a discrete observations.

2.4.1 Discrete hidden states with discrete observations

We will reveal the elements of a HMM and how to model the hidden state sequence given
the observation symbol sequences. Then will review the basic questions concerned with

learning an HMM from data and the algorithms used to solve them.

15

First, consider the HMM discrete hidden state sequence x; = {x;, X5,, X;}, where L is
the number of hidden state symbols. The probability of transiting from a hidden state to
another is modelled by the transition matrix A = {a;;} where Z§-=1 a;; = 1. The initial
hidden state probability is modelled by m = P(x; = i) which means the probability of being
in state i at time 1. Now consider the HMM discrete observation sequence

Z={z17, ... ,Zy } Where N is the total length of the observation sequence. These
observation sequence are represented as symbols of total m which are modelled by the
observation probability matrix B = {bj (k)} = P(observation k at time t|x, = j) where

1 < k < m. These probabilities also sum to 1, Y72, b; (k) = 1. Putting the discrete
observations and hidden state together into a HMM is specified by A = (4, B,). See Figure

2.6:

Hidden states

Observations

Figure 2.6: HMM which shows the observations which were generated from the hidden states using two
probability matrices A and B

16

There are three basic problems in the HMM and they are listed below (Rabiner, 1989):

1. Given the model A = (4, B,) and the set of observations Z = {z; z,, JZn
what is the probability that the model generated these observations P(Z|1) ?
Solution: Forward- Backward algorithm

2. Given the model A1 = (4, B,) and the set of observations Z = {z; z,, JZn
what is the most likely state sequence that generated these observations?
Solution: Viterbi algorithm

3. Given the model 1 = (4, B,) and the set of observations Z = {z; z,, JZn
how to maximize P(Z|1) (probability of the observation sequence) by tuning the
parameters (4, B,)?

Solution: HMM learning with the Baum-Welch algorithm

Since our research only needs the forward-backward algorithm and the Baum-Welch

algorithm we will skip the viterbi algorithm and review problems 1 and 3 in the next section:

2.4.2 Forward-Backward Algorithm
To solve the first problem, a probabilistic method with low complexity (computational time)
is needed. Such a method is known as the a- pass or the forward pass. This pass computes

the probability of the partial observation sequence {z;, z5, ..., Z;} where1 < t < N:
a.(i) = P(zy,25, o, Ze, X = 1| 1)

A recursive algorithm can be used to compute a,(i) in terms of the a,_, (i) :

l
a.(i) = bj(z) Z at—l(i)aij

17

If a is initialized as a;(j) = m;b;(z;), then probability of the observation sequence is:

P(Z|) = Xipan ()

This forward pass algorithm has a complexity of [2N whereas a naive method will take

upto [V.

Similar to the a-pass, is the backward recursion is called the §-pass. In the backward
recursion, the probability of the partial observation sequence {z;,1, Zt 12, -, Zy };

conditioned on the state at time t is computed as:

Be(@)) = P(Zt11, Zewas - 2r|xe = 1, 4)

The recursive form to calculate S, (i) is:

l
Be) =) Ben() ayhy(zesn)

Having found a, (i) and B, (i) from the forward and backward algorithms, they may be

combined to calculate the probability of the observation sequence:

l

PEID =) @@ feld)

i=1

a (D) B (D

P(zIA) ' is the probability of being in state i at

The posterior probability, defined as y, (i) =

time t given the observation sequence and the model. As a result, the most likely state i at

time t is the i for which y, (i) is maximum.

18

2.4.3 HMM learning (Baum-Welch Algorithm)
Adjusting the parameters of the model to determine the best fit to the observation
sequences is part of the HMM learning process. To solve problem 3 of the HMM, which is
re-estimating the parameters (4, B,) to maximize the observation sequences, we use the
forward-backward algorithms to re-estimate the @ and § terms depend on the current
estimates of the (4, B,), after which the parameters are re-estimated. This recursion of
the Expectation Maximization algorithm (Dempster et al.,1977) is known as the Baum-Welch
Algorithm (Rabiner,1989). A good feature of this algorithm is that it will converge
eventually, meaning that when we re-estimate new parameters the likelihood of the data

will not decrease, however, It will continue to increase unless it reaches a local maxima.

To begin, a new variable is introduced known as the di-gamma:

Ye(i,)) = P(xe = i, %41 = jlZ,1) (3)

This says that y.(i, j) is the probability of being in state i at time t and in state j at time t+1.

Then, via substitution in the &« — f equations above we get:

a;(Da;jb;(Zes1)Bes1 ()
P(Z|2)

Ye(i,)) =
Deriving gamma from digamma we get:
ye(@) = Z;=1 Ye (@))
Now that we calculated gamma and digamma, the parameters are adjusted as follows:

* Re-estimating initial state:

m; =y1(D)
* Re-estimating the state transition matrix A:

19

@ = 2= i)
D ERG)

* Re-estimating the observation transition matrix B:

Y21 e ()

. — _zZt=k
b; (k) TR ve (@)

Once the forward-backward algorithm is done, the model’s parameter are then re-
estimated and updated. In the next section, we will explain another tool used in our
research which is a special case of the HMM called the Kalman filter (continuous hidden

states and continuous observations).

2.5 Kalman Filter and Smoother

2.5.1 Background
The Kalman filter is a recursive mathematical state-estimator tool introduced by

Rudolf Kalman in 1960 (Welch and Bishop,2006). The purpose of the filter is to observe
noisy outputs from an observation system such as a sensor or radar and estimate the real
values for them (hidden states from the state system) and their associated uncertainties or
“error covariance”. The Kalman filter first predicts these hidden states and their
uncertainties for time t + 1 given the estimated state at time t . When the time increments
to t + 1, the filter will receive a new observation from the radar or sensor, this new
observation will correct the prediction and minimize uncertainties in the estimate of the
hidden state. The Kalman filter’s output will the optimal state estimate with a smaller zone

of uncertainty around it. see figure 2.7:

20

State estimate Prediction’sZone of uncertainty “error covariance”

Observations

X
f Prediction
Z

Figure 2.7: The Kalman Filter tracking predicting and correcting. The next location £ + 1 is predicted along
with its zone of uncertainty (green ellipse) which were generated from the state estimate at time t and
corrected given the next observation.

Figure 2.7, shows how the Kalman filter tracks a moving object such as an aircraft and finds
the optimal state estimate by correcting the prediction given the new observation z;,,. The
observation will pull the prediction X, closer to its real value to have a new state estimate
Xty1-

To use standard Kalman filter the observations and the hidden state should be assumed
to be linear and normally distributed. There are several ways to represent the transition
process from one state to another, however, for the Kalman filter we need a linear
dynamical system where the state model is:

Xe = Axp_q + wy
The probability form of the state transition is:
P(x¢|xe—1) = P(x¢| Axi_1,Q)
where x; is 1Xd real valued state estimate vector at time ¢, d describes the number of

parameters in the state, A is d Xd state transition matrix which relates the previous state to

21

the current state and w; is a random white noise with mean 0 and error covariance Q,
w~N(0, Q).
The observation model for the linear dynamical system is defined as:
Zy = Hxy + v,

and its probability form is:

P(z¢| x;) = P(z;| Hx, R)
where z; is 1Xn real valued observation vector at time t, n is the number of parameters in
the observation, H is the nxXd observation matrix, it relates the hidden state to the
observation and v, is a random white noise with mean zero and error covariance R,

Ut~N(O, R).

Linear Dynamical System

l w, ~N(0,0) lv‘ ~N(0,R)
State xl(lli(l(len) Ob;er:’ation Zt Kalman (xt 7Pl)
ystem X
System (radar, sensor) Filter Optimal

State

Figure 2.8: Kalman Filter using and the linear dynamical system. The Kalman filter gets the observations z
with noise v from a Radar or Sensor. These observations were generated from the state system and
perturbed by white noise w

Figure 2.8 shows the overall process for generating the observations and the hidden states
at time t using a linear dynamical system perturbed by Gaussian noise. These observations

are then used in the Kalman filter to correct the prediction calculated at time t — 1.

22

2.5.2 Kalman Filter Equations
Given the two models for our linear dynamical system:
Xe = Ax_q + Wy
Zy = Hx; + v,
X¢, W, Ve are unknown to the Kalman filter because they were generated from a LDS such as
in figure 2.8 where the dotted box means that these systems (state and observation) are
running in the background and are unknown to the Kalman filter. Therefore, only the
generated observations are visible to the filter. In the filtering process we would like to
compute the conditional hidden state probability distribution:
P(x¢|zy.0) = N (Axi_1]2: R)
The Kalman filter has two main processes: state prediction and state correction. The state
prediction is the process when the Kalman filter uses the previous state estimate x;_; and
its error covariance or “uncertainty” P,_; , to predict the next location and its error
covariance at time t:
X, = AXx;_4
P=AP_,AT +Q
Next, when the Kalman filter receives a new observation from the observation system at
time t, the Kalman filter uses this observation z; to correct the prediction and its error
covariance J. This is achieved by calculating the residual r and its error covariance between
the observation and the prediction:

r = Zt_th

J=(HP.H" +R)™!

23

Given the residual error covariance J, the Kalman filter then calculates Kalman gain K which
is the average error covariance between the observation and the prediction used to
minimize the state estimate error covariance:
K= P HJ?
Finally, the Kalman filter adds the prediction location and the averaged prediction to correct
the state and minimises its error covariance:
Xe = X+ K(z, — HX,)
P = (I — KH)P,
The state estimate X, lies now somewhere between the observation location and the
prediction and its error covariance will be smaller than the state prediction’s error
covariance. Detailed information about the Kalman filter equations can be found in (Kalman,

1960). Algorithm 2.1 shows the two Kalman filter processes and the way they alternate:

Algorithm 2.1: Calculates P(x,|z})

Require: Z Observations matrix

Require: Q State error covariance

Require: R Observation error covariance
Require: A State transition matrix
Require: H Observation transition matrix
F_{equire: N Total length of the observations
X1= 2

P, = HRH'

t=2

Whilet < N do

Beginning of Prediction Phase

The prediction at time t given the
previous state estimate

The error covariance for the prediction
(the uncertainty)

Xe = AXp—q

P, = AP,_;A"+Q

Beginning of Corrections Phase
The residual or the innovation between
the observation and the prediction

e:Zt_th

_ D r
J=HPH +R The innovation’s error covariance matrix

The Kalman gain is the weighted average

K=PH/] error for the prediction and observation

24

The new state estimate weighted by the

X = X+ Ke gain
The state estimate error covariance
P, = (I - KH)P, matrix weighted by the gain
t=t+1
end while

Algorithm 2.1 shows Kalman filter as a recursive estimator which only need the previous
state estimate and the current observation to estimate the state.

During the prediction phase, it projects the location of the next state estimate using the
state transition matrix A. It also estimates the prediction uncertainty by transiting the
previous state estimate error covariance in addition to the current system error to the next
location. In the correction phase, the Kalman filter has new observation which helps the
filter to correct the state prediction and its covariance. The residual e; and its error
covariance J will correct the prediction and minimise the prediction error covariance. The
smaller the residual the more confident we are about the prediction, when the residual
equals zero that mean the new state estimate will be the prediction. Next step, the

prediction will use this state estimate to predict in the future and so on.

2.5.3 Derivation of Kalman filter errors
We define X; to be our prior that is the prediction and its error é = x;, — X, the difference
between the original hidden state and the prediction and the observation sequence
Z1t = {212, «on ... , Z¢ }.The error covariance matrix for the prediction is defined as:
P, = E[é¢'] = E[(x¢ — X)) (X — £)|21:¢]
= E[(Ax;—q + wp — A%q)(Axeq + Wy — A%,)]

== APII—IA, + Q

25

Same process is used for the posteriori error “state estimate error” € = x; — X, , the
difference between the true state and the estimated state. The error covariance matrix for
the state estimate is defined:

P, = E[ee"|z] = E[(x; — %) (x, — %) | 2{]

=E[(Ax;—y + we — X + K(z, — HX))(Axe—q + we — X — K(2; — HX,))']

= (I - KH) P,

2.5.4 Kalman Smoother
In the filtering process the objective is to find the optimal state estimate given the
observations up to time t that is: P(x;|z;.;) assuming that both observations and the
hidden state are normally distributed. In the Kalman smoother, the objective is the same
except to find the optimal state estimate at time t given the observation from 1 to N, where
N is the total length of observations. It starts to estimate from the end walking its way back
to the state estimate at time t and when combining the filtering and smoothing it ensures
better estimation for that state. This inference combination is called the forward-backward
passes and they are analogous to the alpha beta-passes defined in the HMM except that the

hidden states are continuous in Kalman filter.

26

Kalman Filtering Kalman Smoothing

HOG G

Figure 2.9: Kalman Filtering and Smoothing at time t the kalman filter estimate the statee X, given the
observation time=0 to time=t. The Kalman smoothing estimates the state X, given all the observation from
time=T to time=0

Figure 2.9 illustrates the idea of the forward backward inference process, the forward pass

estimates P(X;|z{) and the backward pass estimates P(X;|z.,1y) Which are combined to

form P(x.|Z) where Z = {z,,2,, ..., Zy }.

2.5.5 Kalman Smoother Equations
Starting from the last time step N, we initialize the smoothed state ¥ and its covariance P
with the state estimate and its covariance at that time:

fN:‘fN
PN PN

and given the Kalman gain at time K, we initialize the averaged smoothed error covariance

between time step N — 1 and N — 2 to become:

PPy = (I — KyH)AP,

27

The smoothed state and its error covariance are then calculated using the Kalman filter
results with the following recursive equations, wheret = N —1,N — 2, ...,1:
Je = (ptA’)/pt+1
X=X+ (e(X — A%))’
Pt = Pt +]t(Pt+1 - ﬁt+1)]£

Algorithm 2.2 shows how to recursively smooth out the state estimates and its error

covariance:
Algorithm 2.2: Calculates P(X¢|z¢.4q)n)
Require: P State estimate error covariance matrix
Require: X State estimate
Require: P State Prediction error covariance matrix
Require: A State transition matrix
Require: H Observation matrix
Require: N
Initialize t with total number of
t=N-1 observation N-1 (starting from the back)
Initialize the last element of the
Xy = Xy smoothed estimate with the last state
estimate
~ B Initialize the last element of the
Py =Py smoothed covariance with the last state
R R covariance
K=PHT/(HPyHT + R)
PPy = (I — KH)AP,
while t # 0 do
Je = (PtA’)/pt+1
%t = f_t + (]t(zz{“+1 _flfé)’
Pe= P+ Jt(Pey1r — Perd)lt
t=t—1
end while Estimates PP~} that is the best
t=N-2 estimate of the error covariance when at
while t # 0 ~ _ time t-1 and t-2
PP, = Pt]£—1 + Ji:(PPryq — APt)]L{—l
t=t—1
end while

28

In summary, we reviewed both algorithms for the Kalman filter and smoother. They are an
efficient tool to track and estimate the location of a moving object that contains Gaussian
noise; where it filters out this noise in the observations which were taken from the radar
and finds the optimal state estimate. Because our research needs a reliable tracking tool

with minimum errors we use the Kalman filter/smoother as our tracking tool.

2.6 Literature Review on Conflict Detection

In controlled airspace (CAS), each aircraft has a zone of separation that no other
aircraft should penetrate. Should this zone be penetrated, the event is termed a “conflict”.
The size of the protected zone defined for aircraft varies but the standard amount of
separation each aircraft should have is 5 nautical miles horizontally and no less than 1000ft
vertically. These conflicts are a major concern for all air traffic controllers for which they

have to constantly monitor the airspace and avoid any possible conflict, see figure 2.10

below:

Protected zone

N2
=

Protected zone

<2t 7

"

Figure 2.10: An example of a conflict where two aircraft lose their minimum separation

29

Current conflict detection systems cannot warn ATC of a conflict more than 2 minutes away
which gives ATCs a small amount of time to resolve it. This issue of conflict detection has
been an attractive field of study by researchers, some have developed new models with
their own conflict detection algorithms and others have optimised current models used by

ATCs.

Different approaches to determine the probability of a conflict and conflict resolution
have been introduced: one approach adopted was by Yang and Kuchar (Yang and Kuchar,
1997) who created an alerting system for free flight that uses Monte Carlo simulations (MC)
to estimate the probability of a conflict of traffic encounters over time. Because it is a free
flight alerting system, they assumed that there is a data-link between aircraft to
communicate with each other in the airspace. The idea of the data-link is to collect other
aircraft’s information in the airspace, such as current state and future trajectory. The
current state information for both aircraft contains speed, heading and altitude which are
then fed into the MC engine as the initial state. Each MC run projects a path for both aircraft
and predicts if a conflict is ahead. The prediction process issues an alert when the host
aircraft’s protected zone is violated by an intruder aircraft. The probability of a conflict is

calculated as follows:

of protected zone intrusions
of MC runs

P(C) =

The protected zone was divided into four stages (where 1 means a remote intruder whereas
4 means nearby intruder and Air Traffic Controllers should take control from here). The size
of the protected zone is a trade off between the successful alerts (SA) and unnecessary

alerts (UA) and it was examined by using a System Operative Characteristic (SOC). The level

30

of alert in each of the first 3 stages varies and has a number of manoeuvres available (N). As

the intruder aircraft gets closer to the host aircraft the value of N decreases.

Using Monte Carlo simulations with on-line applications are computationally expensive
because prediction models are limited within time constraints. To reduce the amount of
computation, Yang and Kuchar (1998) proposed incorporating intent information into the
Monte Carlo simulation engine. Their method was that by knowing the waypoints of two
aircraft, they can create a series of straight segment lines between these waypoints, where
each endpoint represents a change of heading or speed. Then check if the host’s segment

line intersects the intruder’s trajectory line.

Intruder

Intruder 4 \
— +'

Straight line segment

| Host

Host

Figure 2.11: Monte Carlo’s new output Figure 2.12: Monte Carlo’s old output
(straight line segment) approximation, (increments of time), based on (Yang
based on (Yang and Kuchar, 1998) and Kuchar, 1998)

The Monte Carlo simulation engine is fed with intent information, current state, protected
zone size and uncertainties such as tracking errors, manoeuvring characteristics then
outputs a probability of a conflict P(C). The performance was calculated using the System

Operating Characteristic (SOC) by comparing the P(C) both cases :when the intent

31

information is assumed to be supplied and when its not (nominal case) the results are

showing in figure 2.13:

1 ‘}1.49:.3.005 .
*130s
intent case 0¥ 200s
*120s
0.8 1 1405
p 130s
0.7 1
,1205
0.6 1 :
1
< » !
¥ 0.5 I -
z 1051 T~
0.4 - * nominal case
’ I
I
0.3 1 p
]
0.2 !
L 2 !
0.1 {100s¥
i
0 01 02 03 04 05 06 07 0.8 09 1

P(UA}

Figure 2.13: SOC curve taken from (Yang and Kuchar ,1998)) where it shows the P(C) for both cases

As the time increase, the aircraft is approaching another aircraft and the probability of a
conflict is increased for both cases. However, when the intent information is available, the
alert is issued earlier to the air traffic controller as appose to the nominal case. Meaning

when it is 120 seconds the P(SA)=0.85 where as in the nominal case the P(SA)=0.69.

Another study was conducted in (Paielli et al., 1997) to predict a conflict in free flight;
their method is applied to two aircraft travelling along a straight line with constant errors.
They modelled the trajectory prediction errors as randomly distributed based on the live air
traffic data and combined covariance error pairs into a single covariance error relative to the

position, this was done because common errors cancel each other. The authors defined the

32

two aircraft “Stochastic” and “Reference” as S and R respectively, then to combine both

aircraft covariance errors,
AXEXS—XR - AR = 5\(5—)?R b Aézés—éR
M = Cov(Aé)

Where x is the aircraft position, X position prediction, € prediction error and M is the
combined prediction error covariance. Figure 2.14 shows that given the combined error
covariance, they transform it to an error ellipse centred on the stochastic aircraft and the
conflict zone is centred on the reference aircraft using the coordinate transformation to

present an analytic solution.

Combined
error

ellipse
.
Circular
conflict
zone

[A Relative velocity /‘

Extended conflict zone

Figure 2.14: Encounter geometry, taken from (Erzberger et al,1997)

The conflict probability prediction is the area under the combined error ellipse within the
extended conflict zone. The way to resolve this conflict, is to move the extended conflict
zone away from the centre of the error ellipse by increasing velocity of the aircraft
(Erzberger et al.,1997). They compared their output with a set of a conflict encounters and
found that they are similar, moreover, the maximum difference between them was 1.8%

only 5 out of 72 were over 1.

33

One approach was to predict both mid-range (10-20 minutes) and short-range conflicts
(2 minutes) using different critical measures of two aircraft encounters, which is the

maximum instantaneous probability of a conflict (Prandini et al.,2000)

That is,

Cly) = maXtE[O,T]P(Ct)

where yy, is the flight plans for all aircraft, C is the threshold and C(yy) is the critical
measure. The critical measure is equal to the maximum probability of a conflict P(C) over
time horizon T (20 minutes ahead). Every time y changes, the algorithm computes C(y) then
checks if it is below the threshold C, if not, a conflict is issued. This method would give the
exact solution, however, the major concern is the computation amount of the C(y) which
makes it unsuitable for online applications, thus forcing the researcher to look for an
approximated solution which is a randomised estimate of C(y). The approximated solution
is generate a random integer M and interval of time t € [0,T]i = 0,1, ..., M. If PC(t;) > C(y)

then C(y) = PC(t).

The performance of each algorithm was compared after creating the trajectories of
aircraft using stochastic differential equations, computing the critical measure C(y) then
computed and plot the probability of false alerts and successful alerts using the SOC (System
Operative Characteristic) curve using Monte Carlo simulations. The algorithm proposed by
the authors increased the probability of successful alerts and decreased false alerts by
16.4% and this is the case when the flight path is in a zig-zag pattern. The results
P(SA)=0.778 and P(FA)=0.164 as appose to the results in (Erzberger et al.,1997) where

P(SA)=0.727 and P(FA)=0.264, the SOC curve below shows the comparison.

34

Over all, the authors were able to present better results in terms of early conflict detection
and resolution. They however, assume the availability of intent information and the amount
of uncertainties are known. The relationship between conflict detection and infringement
detection systems is that they are both a ground based safety nets which warns ATCs for a
possible conflict whether it is between two or several aircraft (conflict detection system) or
between an unauthorised aircraft and a controlled airspace boundary (infringement

detection system).

Because the current infringement detection system used by NATS has a limitation
which is the lack of early warning time or predicting future infringements more accurately,
our main focus will be to investigating this system to possibly predicting future

infringements more accurately.

2.1 Summary

In this chapter we introduced definitions and tools which will be used throughout our
research. We first defined what an airspace is and how it is monitored by ATCs using radars.
Another tool used to aid ATCs, called the Controlled Airspace Infringement Tool, was
introduced which warns ATCs of any infringements; however this tool has a current
limitation to it which is the warning time. From this problem, we drew our research
question which is: can we build a probabilistic infringement detection model that can warn
ATCs for future infringements accurately? To answer this question we reviewed two
important tools from the literature which will be used mainly for our tracking and learning
process ; the Kalman filter and HMM. Research has been done on this type of model which
predicts future infringement and assigns a probability of infringement to it and it will be

presented in the next chapter.

35

3 Probability of Infringement

As we have seen in the previous chapter, a system was developed called Controlled
Airspace Infringement Tool (CAIT) to warn air traffic Controllers (ATC) about any current
infringements. However, by using this system ATCs can only react to resolve a possible
conflict caused by an infringing aircraft (intruder) when the aircraft is already inside the
controlled airspace, which gives them minimum time to seek a quick maneuver to avoid
mid-air collision. Therefore, it would better to improve this safety feature by predicting the
future locations of the aircraft in UCAS accurately and thereby uncovering the probability of
infringement. In Chapter 3 we will discuss and extend a Probabilistic Infringement
Detection Tool proposed in (Macdonald, 2009) and show how it can benefit this research.
We will also more closely consider the Monte Carlo sampling and the possibility of

developing a hybrid method to estimate the probability of infringement.

3.1 Current Probabilistic Infringement Detection Tool

Macdonald in (2009) proposed probabilistic prediction model which is used to find
the probability of an infringement at a given instant. His method uses the aircraft prediction
%, its error covariance P (zone of uncertainty around the prediction) and calculates the
shortest distance d from this prediction to the CAS boundary C to estimate the probability

of infringement. See figure 3.1:

36

Uncontrolled Airspace
3

k“s\’a"

g

oned
sV

o™

Controlled Airspace
Prediction

o

Prediction’s Uncertainty

Figure 3.1: Shortest Distance Method

Macdonald first assumes that the CAS boundary is a straight line with no bends or corners,
and then he calculates the shortest distance from that prediction to the boundary. Next he
uses the error function to find the probability of infringement given the shortest distance
from prediction to the CAS boundary and the prediction’s location uncertainty or “error

covariance”. This covariance is consisted of two variances showing in figure 3.2:

Figure 3.2: Aircraft cross track and along track errors (ax,ay)

The probability that the prediction is inside CAS can be defined below:

P() = N (x|, P) dx
XECAS

37

where %, P are the prediction and its error covariance respectively. An example is shown in

figure 3.3 for more illustration:

Uncontrolled Airspace

P(xe CAS)

Figure 3.3: The probability that the aircraft prediction is inside or after CAS

To find the probability of infringement Macdonald first proposed three cases, they are:
1. Simple 2D multivariate model where the errors are assumed to be equal
(Ocross = Oatong)-
2. Advanced 2D multivariate model, ignoring the heights and the errors are not equal
(Ocross # Oatong), Same as in figure 3.3.

3. 3D model which includes the altitude and the errors are not equal

The simple 2D model, where the errors are equal the probability of infringement P(I) is

calculated as:

P(l) = % - %erf(aiﬁ)

where d is the perpendicular shortest distance from the prediction to the CAS boundary, o
is the error P = 2] where [is the identity matrix.

The distance is calculated using the prediction location ¥ = (x, y), and a CAS boundary
which is defined by a line with end points (x4, y1),(x5, V) the shortest distance is:

38

[(x — x) 2 —y)] = [(e2 = x) ¥ — y1)]
\/(xz —x1)% + (¥, — y1)?

d =

In the case of advanced 2D Multivariate model, in order to integrate P(x € CAS), the
problem transformed so that the errors covariance is isotopic (0¢yoss = Tgiong)- Figure 3.4

shows this transformation:

Figure 3.4: Standardizing the Advanced 2D problem to become the Simple 2D problem, taken from
(Mcdonald,2009)

The new probability of infringement now where d is the distance after the standardisation

becomes:

b =2~ Ler(4)

2
where d* is the distance from the transformed mean prediction to the transformed
boundary. The last case the author proposed is the 3D model, the equation is similar to the

advanced 2D model, but this time he also standardised the height (the base level) in

addition to the location (x,y) to become (0,0,0) and applied the equation:
~ BL
PO = B (1- o)
On

where PI) = P(I), BL is the new standardised base level and o, is the height error.

39

The only disadvantage of these methods is that this model assumes that the boundary of
the CAS is a straight line without bends or corners where in reality they do. In this research,
the method we will use is the advanced 2D model to find the probability of infringement in

conjunction with another method which we will present next.

3.2 Probabilistic Infringement Detection Tool

Our method assumes that the CAS boundary can take any shape which is composed of
straight line segments. Figure 3.5 shows the different shapes of CAS boundaries projected

into 2-D from different heights.

Easting x 10°

Figure 3.5: 104 different shapes of CAS boundaries ignoring the heights over the UK. Source: NATS

We can track the aircraft in three dimension space with a location point (x, y, z) which will
be a good future work recommendation, this can be done by adding a third parameter to
both the prediction location and its error covariance, in the mean time, we will assume that
our model tracks the aircraft in two dimension with location point (x, y) and its errors are

not necessary equal (O¢ross # Oqiong)- We Will use a combination of methods to calculate

40

the probability of infringement; the advanced shortest distance 2D model and Monte Carlo

(MC) sampling.

3.2.1 Monte Carlo Sampling
MC sampling method uses the prediction and its error covariance in the same way as
the shortest distance method to find the P(I) but here the MC sampling draws a random
number of samples N from the prediction error covariance and then calculates the fraction

of samples which fall inside the CAS. To estimate P(I):

of samples that fall inside CAS
Total number of samples

P() =

The MC sampling performs well in both cases when the aircraft prediction is near a CAS
boundary which is either a straight line or has a sharp corner. Figure 3.6 show an example of
a prediction X and its error covariance P as it is about to approach a complicated controlled

airspace boundary.

-0.1

T
——— CAS Boundary

@ Prediction Error Covariance
© Mean Prediction
02 Uncontrolled]|

Airspace

03 -

04l Controlled _
Airspace

05k -

Longiude

06

-0.7

-08 1 1 |
51.25 51.3 51.35 514 51.45 51.5 51.55 51.6 51.65
Latitude

Figure 3.6: Mean prediction and its error covariance approaching a complicated CAS boundary from UCAS

41

Given the prediction and its error covariance in the figure above we will estimate the
probability of infringement P(I) using the MC sampling method by drawing N number of

samples from the prediction error covariance shown in figure 3.7 below:

-01

T T T T T T T - -
——— CAS Boundary

=D Prediction Error covariance
+ 900 Samples
02 © Mean Prediction

Uncontrolled
03 Airspace

. Controlled

Airspace

Longilude

us +*‘$ £ o
-05 1 + + —~
PR
8 "iji o P(1)=04
e
-06 | + + ¥ —
ki

-0.7 - —
08 L I L 1 1 ! | ! |

51.2 51.25 51.3 51.35 514 5145 515 51.55 51.6 51.65 51.7

Latitude

Figure 3.7: 1000 Samples drawn from the prediction error covariance

To find the optimal number of samples N and calculation time, we estimated the P(l) and
calculation time using Mac machine with OSX 2.6 GHz intel Core i5 where 50<N<2000 and

showed that 900 samples can be optimal as in figures 3.8 and 3.9 below:

42

T T T T T T T T T
—#— Seconds g 3 3 3
Qb mimin P(mean [i B S S e e e]
=== Pljstd :

Time - seconds

i i i i j j j j
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Samples

Figure 3.8: Calculation time for a different N sample sizes where 50<N<2000, where the mean calculation
time is 4.7 seconds with 2.7 standard deviation

]
S35l fp o R 1 R G B S =
03 e S S S A et SR, SN s - S, I -
1 o Py e { s e o o Y S _|
02 i i i i I i i i i
1] 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Samples

Figure 3.9: The probability of infringement given different number of N size samples. The standard deviation
for all N size is 0.02 and mean=0.39

As we increase the number of samples by 100 the amount of time to calculate the P(l) will
increase by approximately 0.5 seconds, the P(l) however, changes in very small percentage.

As a result, we chose the number of samples N=900 where it gave the closest estimate to

43

the mean P(l) for 100 different sizes of N samples ranges between 50 and 2000. Also, the
amount of time required to estimate P(l) using 900 samples is the same or less than the

amount of time a radar takes to observe the next location which is T=4 seconds.

3.2.2 Hybrid Method
The shortest distance method works as well as the MC sampling in calculating the
probability of infringement as long as the aircraft is not close to a CAS boundary corner.
Given the general Kalman filter’s equations in chapter 2, we use it on a real track to predict
and estimate the locations of an aircraft flying towards the edge of the CAS, before turning

away from it shown in figure 3.10.

259 T T 7 I T T I -
/ Obsenvations
/ Predictions
CAS boundary

2,581~ / \ + Predictions to calculate their P(l) 1

2.57

2,56~ //

e
o 255 AN
B ;// |
2 e |
2.54] 1 \
'
I3
)
2.53] [
S(an/ \ J
2.52| \ }
251]~ A /
i /
I r /r I I I I I
4.96 4.98 5 5.02 5.04 5.06 5.08 5.1

Easting 5

Figure 3.10: Aircraft approaching CAS boundary which has a sharp corner

1 0 0 O

0 0 1 0] because we are only

where the observation matrix was defined as H = [

observing the locations of the aircraft. The state transition matrix A =

cCooR
c o R
oRr oo
N o O

where T = 4 seconds (the time interval to observe the next location from the radar). The

44

green ellipses in figure 3.10 are the predictions error covariance P, where P = APA + 0.
We fixed the state error covariance Q through out this particular example with a random
number since we have not learned the amount of error in the model yet, which we will in
the next chapter. The observations were plotted in blue, 1 step ahead predictions in green,
and highlighted in red crosses, are the predictions we are interested in finding their

probability of infringement which are plotted in figure 3.11.

0.45 . .

T
—H&— MC sampling
—+— Shortest Distance |

0.4

0.35]. m i
0.3} \ 4
0.25 - Eﬂ -
0.2

0.15

Probability of Infringement - P(l)

0.1

0.05

25

Point in track

Figure 3.11: Probability of Infringement of the predictions plotted in red crosses in figure 3.10

Figure 3.11 shows the probability of infringements using the shortest distance and MC
sampling methods. We used 1000 samples for the MC sampling. As the aircraft approaches

the CAS boundary corner the shortest distance, assumes that the corner of CAS is a straight
line, therefore, the probability of infringement is close to % here the P(I) = 0.45. The MC
sampling, however, estimates the probability of infringement less than 0.2, since the error
covariances shown in figure 3.10 represent almosti here, the P(I) = 0.2. Another example

in figure 3.12 and 3.13 shows how the shortest distance assumes CAS boundary as a straight

line.

45

254

2521

Northing

25

Observations
Predictions

——— CAS boundary]
+ Predictions to calculate their P(l)

Easting

5.12
x 10°

Figure 3.12: Real Track showing an aircraft cutting the corner of CAS boundary. The red cross (+) corresponds
to the prediction

Probability of Infringement - P(1)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

T T T
—F— MC sampling
—5— Shortest Distance

/

g mm o

0= =% 6 8

Point in track

10

12

14

L

Figure 3.13: Probability of infringement using MC sampling (500 Samples) and the shortest distance for the
red crosses in figure 3.12

Figure 3.12 shows real track where the aircraft only cuts the corner of the CAS boundary.

We calculated the P (1) using both methods on the red crosses and found out the SD

method results in a P(I) = 0.5 whereas the MC sampling results in P(I) = 0.05, see figure

3.13.

If the aircraft is not approaching CAS corner, both methods perform well. For example, in

figure 3.14 shows a partial real track which we used to predict the locations of the aircraft

46

where the red crosses marks the predictions. We are interested in finding their probability
of infringement since the rest of the track is not close to CAS, their probability of

infringement is equal to zero.

‘Observations

1 step Prediction
CAS Boundary
262~ + Predictions to Calculate their P(ifingement) 1

2,631~

261~ -

26~ .

+ e ———— e
259 / *\\ 4
3
258|- CAS / i I 4
/

Northing

4.98 4.99 5, 5. 0.’3
Easting X 10°

Figure 3.14: Predictions we used to find their probability of infringement using the shortest distance and the
MC sampling methods at the same time as shown in figure 3.15

Figure 3.15 shows the probability of infringement using both methods for the prediction
locations in figure 3.14. When the aircraft approaches CAS boundary the probability
infringement using both methods starts to increase and when the aircraft gets inside it gives
a high probability of infringement close to to 1. When it comes back to UCAS, however, the

probability of infringement then starts to decrease for both methods.

47

—H— MC Sampling
| —&— Shortest Distance

Probability of Infringement

.
0 10 20 30 40 50 60
Track point

Figure 3.15: Probability of infringement using both methods for the red crosses plotted in figure 3.14

The previous two plots shows an example of when an aircraft indeed infringes the CAS and
both models performed well. The predictions marked in red crosses are 1 step ahead
predictions; therefore, their covariances are quiet small. As a result, there is usually not too
much differences between the methods, however, we will see in the next chapter how to
estimate the P(I) for the 5 steps ahead predictions instead of 1 step. In figures 3.16 and
3.17 show different example of estimating the probability of infringement on another partial

real track, but this time the aircraft does not infringe the CAS instead it turns away from it.

48

x10°

Northing

Easting x 10°

Figure 3.16: Predictions marked in red cross (+) used to find their probability of infringement using the
shortest distance method and MC sampling as shown in figure 3.17

0.55 T T T T T T

—8— MC Sampling
—H&— Shortest Distance []

05

0451

0.4

035

03

025F

Probability of Infringement

0151

DDS 1 1 1 1 1 1 1
0 2 4 6 g 10 12 14

Track point

Figure 3.17: Probability of infringements for the red crosses in figure 3.16

MC sampling method works for arbitrary shaped boundaries, however, it is computationally
expensive. Since both methods show the same results when the aircraft is distant from
corners in the CAS boundary, it would be better to use the shortest distance whenever we
can as long as the prediction is away from CAS boundary corners. Therefore, in order to
effectively use both of them in the right time, we propose flexible conditions which can be

49

changed to determine when to use one method or the other in order to find the probability

of infringement accurately, using the following conditions:

1. If the shortest distance is greater than 3@, then P(I) = 0. This means the
prediction is very far away from the CAS therefore, the probability of infringement
will be effectively zero.

2. If the shortest distance from the prediction to any vertex of the CAS boundary is
greater than 2@, where 0, is the largest variance from d,,,s5 and ogiong-
This condition means that we are not very close to corner of a CAS boundary
therefore, the shortest distance can estimate P(I) accurately.

3. If none of the previous conditions stands, then we use the MC sampling method.

How to calculate the distance from the prediction to nearest point on the CAS boundary and
to find out the nearest CAS vertex is explained as follows: First, we assume we have a
prediction in a vector X = (X, ¥) and the two points on the CAS boundary v; = (x4, 1), v, =
(x5, y,) and a point x between them where it is the shortest distant point on the CAS

boundary to the prediction vector X. The parametric equation for the line is defined by:
x=v;+ A(v,—v;) where0<1<1

The condition for the closest approach of x to x' is that (x — x”) is perpendicular to
(v, — v,) therefore, (x —x")°(v, — v;) = 0. To calculate A we solve the above equation

(x'— v1)°(v2—v)

lvy—v4l?

for A to become A =

50

To find the shortest distance from the prediction to the point x is listed below:

'—v1)°(v—vq)

lvy—vqlI?

1. Solve for A=(x

2. If A > 1, thenit’s off one end of the CAS boundary
3. If A1 <0, thenit’s off one end off the other end of the CAS boundary
4. Calculatex =v; + A (v, —vy)

5. Calculate the distance d = ||x — x'||?

Figure 3.18 shows the prediction near a CAS boundary where we calculated the shortest
distance to it as a line from the prediction and perpendicular to CAS boundary. It also shows
how we can determine the location of the CAS corners so we can use the conditions above

in order to use the most accurate method at any specific time.

UCAS
‘_)2 = (xzayz)

v, = (xlayl)

Figure 3.18: Calculating the shortest distance from the prediction to a point on the CAS boundary:

Now that we know the conditions and how to find the nearest vertices of the CAS boundary,
we use the same partial track in figure 3.10 and apply the conditions on it to find P(I) in

figure 3.19.

51

035 T 1 ' v)
—8—MC sampling Whole Track

03 * Hybrid MC sampling

* Hybrid Shortest Distance

o
N
T

1

of Infringement - P(1)

015 B, 4

vability

Pro

Figure 3.19: Probability of infringement using the Hybrid method, where we apply the conditions

Figure 3.19 shows the hybrid method which using the conditions. Notice the point in track
from 0 to 8 we used the second condition which is the aircraft is very far from the CAS
boundary. However, at point 9 this is when it gets closer to the CAS boundary and not near
any of its corners, the first condition is applied which is calculating P(I) using the shortest
distance method. Points from 10 to 15, the aircraft is approaching a CAS boundary,
therefore, we use the third condition which is MC sampling. From point 16 to 19, the aircraft
heads away from the CAS boundary corner, as a result, condition 1 is used and will calculate
P(I) using the shortest distance. Finally, the last two points, the aircraft is far enough from

the CAS boundary and therefore, it gave a probability of infringement equal to 0.

The hybrid method is an effective way to save the computation time required to calculate
the P(I). Because instead of using the MC sampling all the which is considered to be slow,
we can use the shortest distance method whenever we can since it gives the same results as

the MC sampling as long as it is away from a the CAS boundary corner.

52

3.3 Conclusion

To conclude this section, we reviewed the current probabilistic infringement tool which
uses the shortest distance method; and extended it to be able to find the probability of
infringement with the assumption that the CAS boundary is not a straight line. The
downside of the shortest distance method is that it does not work whenever the prediction
is near a corner of the CAS, therefore, we used the MC sampling method which can deal
with this problem. The MC sampling method however, can be very slow depending on the
number of samples to be drawn. Therefore, we implemented the hybrid method which
switches between the two methods. When we used both methods together they were very
similar, so when we use the hybrid method it eliminates each method’s disadvantage. For
example, if the aircraft is away from a corner, we would use the shortest distance to
calculate the probability of infringement because it’s faster than the MC sampling method.
Therefore, in order for either method to work well we need to first learn the aircraft’s
position and the errors in the prediction as accurately as possible. We can then predict the
uncertainty better than having one error for the entire flight time. In the next chapter we
will show how to track the aircraft using the Kalman filter and learn the model’s error using

the EM algorithm.

53

4 Prediction with Online Learning

Our research objective is to investigate a model which predicts future infringements
more accurately using the probability methods covered in the previous chapter. A benefit of
using probability methods is that we can estimate the P(I) based on the mean prediction
and its covariance. It is apparent by looking at the tracks that the state error covariance
varies for different aircraft and for any particular journey which leads the model to predict
inaccurately. Therefore, it is necessary to learn the model’s error covariance for any track,
this will not only help in predicting more accurately but also find the probability of its
infringement. There are two types of model learning: one is learning the errors for each
track given the whole journey time step N (all the observations). Second case is learning the
errors for any particular journey using observation up to time t where t < N. We will be
using the Kalman filter reviewed in chapter 2 as our tracking tool and the EM algorithm as

our learning tool for both types.

Because aircraft tend to fly in different fly modes such as in a constant velocity mode
or in a constant acceleration mode (turning mode), it is essential to implement different
kalman filters for different flight modes and then switch between them when appropriate
this switching process will be discussed in the next chapter. In this chapter however, we will
focus on the two types of covariance learning for all our Kalman filters separately. We will
use synthetic track and show the results by comparing the true covariances and the learned

ones.

54

4.1 Learning Using the Expectation-Maximization Algorithm

Fixing the model with any error for the entire flight is not efficient because the aircraft
will tend to change its heading at some point and fly around in different patterns. Therefore,
we need to learn the model’s changing state covariance for any track. This allows the
covariance to change during the flight. And by finding them, it will minimize the errors in the
state estimation and prediction and increases the likelihood of the observation. The
expectation maximization algorithm is a method used to maximize the likelihood of the
observations given the new parameters of the model (Dempster, 1977). It alternates
between the E-step which computes the log-likelihood of the observations given the current
parameters and the M-step which maximizes the log-likelihood computed in the E-step by
re-estimating the parameters 8 = {R, Q}. The EM algorithm is analogous to the Baum-

Welch algorithm we have seen in the HMM section in chapter 2.

The two steps are:

* E-step: given the current set of parameters 8¢, observed data Z and hidden states X,
then the auxiliary function is defined as:
G(9|9i)=Ex|Z'9 [logP(H;X, Z)]

The complete data log-likelihood is calculated as:
N
1 N1 R N
log P((X}.{Z)) = =) [(2 = H2)'R™ (7 — H2))] — 5 log(IRI)
t=1

S o N -1
-~ |5 G- az0 G - 42| - == tog(la))

t=2

55

* M-step: find the parameters that maximize the auxiliary function calculated in the E-
step:

0* = argmax G(6]0Y)

The M-step equation defined above is done by differentiating G with respect to R or Q and

solving g—z =0or Z—g = 0. This results in the following equations (Shumway, 1988):

N
R = (2~ Hn) (2 — H %)’ + (i F"Hy,))/N
t=1

where & and P™ are the smoothed state, its error covariance for time t for the m®"
Kalman filter. For the model error covariance we need to sum the smoothed error

covariances from t = 2 upto N to re-estimate Q:

N
D = Z(itnl1§tn11 +ﬁtT1)
t=2

N
E= Z(iinitnh +PR™)
t=2

N
F=) @Psp +Fm)

t=2

where PP™ is the smoothed error covariance between time t-1 and t-2 for the m** Kalman

filter. The estimate of the state covariance is then Q:

Q=(F—EA —E'A—ADA)/(N — 1)

56

The overall process of learning the Kalman filter using the EM-algorithm is listed below:

E-step:

* Run the Kalman filter, forward-pass

* Run the Kalman smoother, backward pass
M-step:
* Re-estimate Kalman filters error parameters (R, Q)

The process stops when we find the optimal error covariance at the end of the M-step, and

by optimal is by finding the error coariances that is closest to the true error covariance.

We have seen how to estimate the state and smoothing them using the Kalman filter in
chapter 2 section 2.5. In this section, we will focus on the M-step which re-estimates the
errors of the model. This is a crucial step in which it helps us to find the best (Q*, R*) which
gives the maximum likelihood of the observation.

There two types of error learning we implemented in this research: first, learning the error
given the whole track, and second learning the error at each time step given a history
window of N steps behind. Although the first learning type is not very efficient in
computation time and estimating the optimal error at each time step, but it would be
interesting to find out how the EM steps works for a given whole track. This type of learning

is presented in algorithm 4.1:

57

Algorithm 4.1: Overall Process of Learning given the whole track N

iters=0
Maxlterations= 100 Maximum EM iteration
m=2 Number of models

while iters < Maxlterations do

fort=2to N
(ftl ﬁt; ftl Ptr LT]:'n) = E' Step
Filter (®_1, Pr_1, %1, P, Qi Ry, Hypy Ay,) Kalman Filtering

(%._1, P,_1, PP,) = Smoother (&, P, Rly, Hppy A gy, t)
Kalman Smoothing

Nextt
(Qi Ri) = ErrorEstimation(z, (%, P, PP, N)™) M-step:
iters = iters + 1 Re-estimating models’ and
end while observation errors

In order to re-estimate the errors of the model we need the Kalman smoother outputs

()?, P, 1573) which were calculated during the E-step to estimate the new errors for the whole
track. The error estimation too seen in the M-step in algorithm 4.1 is used to re-estimate
the errors using the Kalman smoother outputs: the smoothed state X;, the smoothed error
covariance Pt and the smoothed error covariance Fﬁt betweenthet — 1 and t — 2, the

error estimation is shown in detail in algorithm 4.2:

Algorithm 4.2: (Q;, R;) = ErrorEstimation(Z, X, 13,1573,N)

Require: Z Observation matrix

Require: X Smoothed states matrix

Require: P Smoothed error covariance
matrix

Require: PP Smoothed error covariance
matrix between time t-1 and ¢t-2

Require: N Total Length of the journey

m=0or1 Flight mode type

D,E,F=0

t=1

R=0

while t < N do

58

R=R+ (z, — Hmfgn)(zt - Hmfgn)’ + (HmﬁLZnHm’)

t=t+1
end while

R;, =R/N

t=2

whilet < N
D=D+ %1% +~Pt—1)
E=E+ (%%, + PP,
F=F+ (%% + P)
t=t+1

end while

. (F—EA — AE'— ADA')

mn N-1
Return (Ry,, Q)

Observation error re-estimation

Model error re-estimation

We tested this type of learning on a synthetic track shown in figure 4.1; results of the

learned error covariance for the whole track is shown in figure 4.2:

x 10
0.5 T T T T T
Observations
oL ~ Estimated States |
05 . Smoothed States
o AN Predictions
\
AL -
1.5 \ .
N
> 2- \, .
250 \ .
3L \ -
-3.51 4
4. -
N\
-4.5 ' : : : :
-0.5 0 0.5 1.5 2 2.5 3
X X 104

Figure 4.1: Synthetic Track used to test Learning the model's error covariance given the whole track

59

100 g T . T I

: : —e— 9
ag — 0, |
S TR i
2 L SR N— T T—— |
oLl

Q- meters

20 i i ; i
0

20 40 60 80 100
EM iterations

Figure 4.2: After learning the model's error covariance Q using 100 EM iterations where the true
(04, 0,)=30m

Figure 4.1 shows a synthetic track where it flies with a constant velocity and a constant
error covariance of Q. = (302)1, where I is the identity matrix. Figure 4.2 shows the
model error covariance after running the EM algorithm 100 iterations on the track in figure
4.1. We noticed how Q tends to get closer from the first initialisation Q; = (1002)I to the
true value of the model’s error covariance . This tells us that as long as the aircraft flies in a
constant velocity we can estimate the true value of the Q given the whole track. We carried
out this learning on an additional 12 tracks each has 300 track points, and estimated the

average error for all tracks after 100 EM iterations is 5.4 meters shown in figure 4.3:

60

30

—e— Error
T ez ALl e=5‘4 m
25+ 5 B

ol]

True

-Q

eztimated
o
T
I
I

Error-Q
=
I
o
!

Figure 4.3: Error between the learned and the true state error covariance Q after running 100 EM iterations
on 12 synthetic tracks

What if the aircraft change its direction? The error covariance will vary during the flight,
therefore, learning one error for the whole track is not efficient as we mentioned above.
Instead we need to learn the covariance at each time. We show in algorithm 4.3 the overall

process of the EM algorithm for this type of online learning:

Algorithm 4.3: Overall Process of Learning for each time step t

iters=0
Maxlterations= 10
m=20orl Flight mode
fort=2toN
while iters < Maxlterations do
E- step:
(ft'Pt:ft:Pt'éT) =
Filter(X;_1, Pi_1, %, P, Q7" , m, Hyp, Ay, £) Kalman Filtering
(%_1,P,_1, PP,) = Smoother (&, P, R, Hzy, Acy) t) Kalman Smoothing
M-step:
(Q™ R!™) = ErrorEstimation(z, (%, P, PP, t)™) Re-estimating
models’ and

iters = iters + 1 observation errors

end while
Next t

61

In algorithm 4.3, every time we get an observation, we run 10 EM iterations to find best
Kalman filter’s error covariances (Qf*, RY") given all the observation up to time t before
moving on to estimate the error covariance at time t + 1. In algorithm 4.4 below, we show
the inside of error estimation tool, but with little crucial modification which is re-estimating
the error covariances given a history window of 15 time steps (1 minute window of flight
journey time) instead of averaging over all the whole journey time up to time t. There are

two reasons behind this:

1. To better estimate the error covariances

2. To minimise the computation time

For example, assume that the aircraft was flying in a straight line with cross track error of
30m and along track error of 30m, then after 30 seconds it changes directions with little
acceleration applied causing errors to increase from 30meters to 60m, after 1 minute the
aircraft decides to fly back in a straight line with errors of 30m. If we use the whole history
of flight time we would average the whole errors including the large errors that occurred
during the turning mode. So when the aircraft errors go back to 30m after turning, the error
estimating tool would still include the 60m error to be averaged and therefore, the errors
will still be high. As a result, we create a history window of 15 steps to re-estimate the error
covariances to not only avoids this issue; but also to minimise the computation time. The
longer the window the slower the error estimator tool converges to the right error and vice

versa. :

62

Algorithm 4.4: (Q",R[") = ErrorEstimation(Z, X, P, PP, t)

Require: Z Observations matrix

Require: X Smoothed states matrix

Require: P Smoothed error covariance matrix

Require: PP Smoothed error covariance matrix
between time t-1 and t-2

Require: t Length of the journey up to step t

m=0or1 Flight mode

D,E,F=0

HistWindow=15
History window of 15 steps

if t <= (HistWindow +2) then

N=t

t=2
else

N =t

t =t — HistWindow
end if

while t < N do
R = (z; — HuX")(2e — Hn %) + (Hp P"Hyy)
t=t+1

end while

Observation error re-estimation
R =R/N

whilet < N
D=D+ %1% +~Pt—1)
E=E+ (%%, + PP,
F=F+ (%% + P)
t=t+1

end while

o — (F—EA' — AE' — ADA") Model error re-estimation
m—

HistoryWindow — 1

return Q["*, R["*

Figure 4.4 shows a synthetic track with 2000 track points (2 hour flight time) where true

(0y,0,) =60m between time steps 500 < t < 600 1000 < t < 1600 and 30m otherwise.

63

Observations
Estimates
o -~ Predictions
N\ L ks etV S o @ rto,=60
- pio
' —N7 g end °><y:5'3 i
7 start oxy=50
N N o enda,=60 ||
\
3L N -
-]
>4 \ -
sk \ -
\
\
6 -
ke -
sl -
a 1 1 1 1 I
2 0 2 4 6 8 10
X x10

Figure 4.4: Synthetic track with different error covariances where (g,, 3,)=60m between the triangle square
markers and 30m otherwise

We then re-estimate Q in figures 4.5 and 4.6 using the history window of 15 steps and

without it to compare them with the true values of the model’s error covariance.

120
a,
100 3
@ 1/ : %
80 [\F M W1
o IR h, 1 oLl L %rue
5 flp/ ol 00 A j\ ﬂ{\/}ﬂ"‘k‘ Y
3 80 [‘1’} [l /lp\ﬂ"l‘ ‘1‘41’ P A VAN
£ T U 1 ‘ o W LN LI
s} | ey \ / #
40 WA /s 1 P AN h LY / Wi
. S A A 2 A 1\”1 ‘m/h\ 1y, el "’V\/\(1 7 rLN"
20 r‘ W
0 | | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Track Point
60 T T T T T T T T 1
% %Yrue I
-------- Error mean=8
“ = Enmorstd=7
H

Error (Q-Q

Track Point

Figure 4.5: Learning the model's error covariance at each time step with a window of 15 time steps after 10
EM iterations for the synthetic track in figure 4.4. In addition to amount of error between the true Q and the
estimated Q.

64

Figure 4.5 shows that after 10 EM iterations, Q gets closer to the true value marked in black
where the average error between the true error covariance and the estimated one was 8
meters with a standard deviation of 7 meters as appose to figure 4.6 where the error
estimator is having a hard time picking up the right errors with average error 13m and

standard deviation 12.

T T T T T T T T I
60 |- a9,
=)
50 ¥
@ _chue
& IR e —
g 40 —r\ E e — —
' M F—— |
o] iy i ——— e
30
20X _
1 1] 1 |]] 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Track point
40 T T T T T T T T T
% Otrue
30 L % %true
o s e} Pl o n e b o s G T Ty | — = O MeAN=1S
2 T —— . std=12
9 20 — —
el S
- I | [| | | Lo
ooqp _r\ e car e ——
| W - e
Dj'!"._. A '_-,HLN-"'_’."':‘_F’“A_._.F._ T O BN e S - S i T B Sp— o S |
1} 200 400 600 800 1000 1200 1400 1600 1800 2000
Track point

Figure 4.6: Learning the model's error covariance at each time step without a history window after 10 EM
iterations for the synthetic track in figure 4.3. In addition to amount of error between the true Q and the
estimated Q.

As far as for the computational time, we show in figures 4.7 and 4.8 the average time
required to re-estimate Q at each time step with a history window and without it

respectively.

65

With a History Windou

T T T T T T T T I

Time

09k —— =04 1
—-—sld=0.2

Time

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Track point

Figure 4.7: Time at each time step using the history window of 15 steps

Without History Windovy

14 T T T T T T T T T
Time
— .. py=06 H
T2z — . — . gtd=0.35
08| i

me

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Track point

Figure 4.8: Time at each time step without using the history window

In figure 4.7 given a history window the average time was 0.4 seconds and a standard
deviation 0.2 seconds where as in figure 4.8 the average time required to estimate the

errors without the history window was 0.4 and standard deviation 0.35.

66

Because we are using one Kalman filter for the track in figures 4.1 and 4.4, it would be more
efficient if we could use different Kalman filters and switch between them (as will be
discussed next chapter). In the next section, we will implement two Kalman filters, which
deals with two different flight modes m: Constant velocity (CV) and constant acceleration

(CA) modes.

4.2 Learning Model Error covariance with Different Kalman Filters

First, we have implemented two Kalman filters: CV and CA Kalman filter. It is more
efficient to have two different Kalman filters to be used when appropriate instead of having
one flexible Kalman filter as we have seen in figure 4.1 and 4.4 in the previous section.
Figure 4.9 illustrates why is it important to have two different Kalman. We used a real track
given by NATS and apply our Kalman filters on it to predict and estimate the aircraft
locations given the observations (blue line). When the aircraft flies in an arc shape (turning
mode), our CA Kalman filter predicts more accurately than the CV Kalman filter where the
RMSE for the state predictions (green crosses) equals to 65m whereas the CV KF gave
RMSE= 73m. The reason for this is because CV Kalman filter models the aircraft as flying in a

straight line whereas the CA Kalman filter models the aircraft flying in a circular arc.

67

T T T T :
Obsenations

/ “\ O Starting CA

O EndofCA
Predictions [}

Northing

4. Start Tuming

[iX) " N -

47 475 28 4.85 2.9 2.95 5 5.05 5.1
Easting x 10°

Figure 4.9: Real track Prediction showing the locations of the aircraft where it started to accelerate in (+).

After running several experiments on predicting ahead of time such as 2 minutes
ahead, we found out that the amount of prediction error increases linearly with time this
will provide inaccurate estimate of the P(l) therefore, unnecessary false alerts to the ATCs.
Given the results for predicting ahead of time experiments, we chose to extend both Kalman
filters to predict 5 steps ahead that is 20 seconds in the future. This prediction can not only
provide us with the a clear idea where the prediction location might be but also raise an
alert to ATCs that an aircraft is approaching the CAS boundary and may infringe it as appose

to the current CAIT, where it alerts them when its already being infringed 8 seconds ago.

First, we will present both components and equations of the constant velocity Kalman
filter and the constant acceleration Kalman filter. The Kalman filters’ general equations and

symbols are presented in chapter 2.

68

Kalman Filters’ initializations for both Constant velocity and acceleration models:

We initialized the state estimates and predictions with the first observation for both Kalman
filters X; = X; = z;. The initial state’s error covariance Q will be set with a large number
since we are uncertain about the first prediction, however, the state’s initial velocities and
accelerations were set to 1 instead of zeros to avoid initial division by zero inside the Kalman
filter. The error covariance for the state estimate and prediction (P;, 131) were initialized
with the observation error covariance matrix R = pXI by: P, = 131 = H},RH,, where mis
the mode type (CV or CA). The state transition matrix A and the observation matrix H are
both constant for both CV and CA models. Their definition will be in section 4.2.1. Also, since
the radar rotates a whole revolution in 4 seconds collecting the locations of the aircraft in
each revolution, the time interval we used is T = 4 seconds. In addition to the 1 step ahead
prediction time interval T, a new time interval 7 is defined for the multistep prediction
where T = 5X4 = 20 seconds (predicting the location of the aircraft 20 seconds ahead in

the future).

4.2.1 Constant Velocity Model
The state of the aircraft in CV mode is defined as real valued vector x = [x v, y v, | where
[x y]are the state locations and [v, v,] are the velocities in the x and y directions. The

state model and its state transition matrix are defined as:

_ 14
Xe = Acvxt—l + ch Wey

oo
orRr oo
N oo

69

1 7 0 0
010 0
Avr =19 0 1 ¢
00 0 1
TZ
T 0 0
GCU_ Tz
0 0 — T
2

The observation model for the CV Kalman filter and it transition matrix is defined as:

Zy = Hopxe +v0

1 0 0 O

Hcv:[o 0 1 0

4.2.2 Constant Acceleration Model
The state of the aircraft in CA mode is defined as x = [x v, a, ¥ vy, a,], where [x y] are the
state locations, [v, v,] and [a, a,] are the velocities and accelerations in x and y

directions respectively. The state model is defined as:

—_— !
Xe = Acaxt—l + Gca Weq

— TZ —_
1T = 00 0
01 T 00 0
00 1 0 0 0
Aca: T2
00 0 1T =
00 0 01 T
0o 0 0 0 0 1.
— Tz —_
1 — 00 0
9
01 7 00 0
00 1 00 0
Aca,‘r: 72
00 0 1 —
t9
00 0 0 1 7
o 0 0 0 0 1d

70

The observation model for the CA Kalman filter is defined as:

Zy = Hogxy +v
1 0 0 0 0 O
H“‘_[o 0 01 0 o]

4.3 Further Testing on Synthetic Tracks

To generate the synthetic tracks and observations we used the underlying state and

observation linear equations and they are:

Xe = ApXe_q + W

Z = Hpxe +v

where w~N (0, Q,,) and v~N (0, R) and m is the type of flight mode (CV,CA). These

tracks either have one state error covariance or different state error covariances for the

whole track as shown in algorithm 4.5:

Algorithm 4.5:

(XsyntheiC,ZsyntheiC) = GenerateSyntheticTracks(A¢y, Aca, Qcy, Qca, R, H,N)

Require: Ay, Aca
Require: Q¢y, Qca
Require: R

Require: H
Require: N

The state transition matrices for
CV and CA models

The state error covariances for CV
and CA models

Observation error covariance
matrix

Observation matrix

Total track length

71

whilen < N

if (500 <n <6000r 1000 <n < 1600) Between these time points apply
acceleration
w = randnXQ:y4 Generate random errors from CA
Xe = AcpXe_1 + W error covariance
else
w = randnXQcy Generate random errors from CA
Xt = AcyXe—1 + W error covariance
end
v = randnxR Generate observations random
zy =Hx; +v error
end

Return (x, z)

4.3.1 Best errors for the whole track
For this particular section of learning the whole track, its only efficient to test it using one
error covariance for the whole track as a result, we used the CV error covariance with

random parameters to generate the track which is:

2
o 0 001z 0 0 0
0 =% o= 0 0f _to 012 0 0
frue 0 oy O 0o 0 12 0
0 0 a3 0 0 0 01?7

In addition to white observational noise:

Rirue = p*I where p = 50 and [is an identity matrix

In figure 4.10, the observation track is generated by the true states, the state estimation and

the smoothed track after 100 EM iterations.

72

T T T T T T
observations n
true track
State estimate T[]
Smoothed track

-500 [~ VM ~

-1000 -

-1500 |~

-2000 |-

-2500 |-

-3000 |-
X

-3500 |- i

-4000 |- i

-4500 L i

r r r r r
0 500 1000 1500 2000 2500
X

Figure 4.10: Synthetic track with one fixed error generated to test the EM algorithm for the whole track

We generated another sample track where we initialized the Kalman filter with large

observation and state error as appose to the previous example:

1002 0 0 0
71002 0 1o 22 0o o
Ry = [o 10022 =1 0 0 1002 o0

N

0 0 0 2

The first observation and state estimate are initialized by the first true state z; = x; =
XM % =[x v, y vy]. In figures 4.11 and 4.12, we ran the EM algorithm 600 iteration to

find the new best errors (Q*, R™).

73

100 T T T T T

P
O final p=46
90 |- i

80 |- -
o 70} -
60 - -

50 -

r r r r
0 100 200 300 400 500 600
lterations

m
e}

Figure 4.11: Best observation error p after 600 iterations

In figure 4.11, the true error of the observation which we generated was 50, and after 100
EM iterations it decreased from the initialized value 100 to 46 which is very close to the true

value of the observation error.

100 T T T T T
OX
90 - .
o
y
80 |-] _ .
g final 0,=0.9
70 |- 0 final 0y=1
- 60 .
k)
g 50 1
-
c 40 .
30 .
20 .
104 .
0 r r r r T I q\
0 100 200 300 400 500 600

lterations

Figure 4.12: Estimated g and g, after 600 EM iterations

The true values of the model’s error covariance o,=0a, = 1, we show in figure 4.12 that
after 600 EM iterations the values of o,and 0, dropped from 100 towards 1.

74

4.3.2 Best error at each time t

Since our research focuses on this type of learning, we will test our error estimation tool
using a synthetic track with 2000 time steps with using both Kalman filters: CV and CA. They

were generated using the following:
x[TUER = AxETUth 4w,

This track has two different model errors (Q¢rye1, Qrruez) in different time periods:

w~N(0,Qcq) when 500 < t < 600 and 1000 < t < 1600 and w,~N (0, Q) otherwise.

oy 00 0 0 01 n0 0 0 0 o
2
0 oux 2 0 0 0 0 33 0 0 0 0
Q:‘)O“axooozooooooand

v=lo 0 0 g 0 O 0 0 0 302 0 0
0 0 0 0 g3 O 0 0 0 0 32 0
0 0 0 O 0 O-c%'y -0 O O 0 O O-

602 0 0 0 0 0]

0 62 0 0 0 0

0s=| 0 0 220 0 0

ca 0 0 0 602 0 0

0 0 0 0 62 0

Lo 0 0o o o 22

The observations were generated using the x!"%" in addition to white noise calculated as:
z, = Hxf"™" + v, where v,~N'(0,R)
R = p?I where p = 15 and I is an identity matrix

Figure 4.13 shows the observation, the true states, the state estimation and the smoothed

track after 10 EM iterations calculated using the EM algorithm.

75

¥ 10

2 T T T T T
observations
0 true track
State estimate
Smoothed track
2k i
s i
=
B J
ak i
A0k . i
_12 1 1 1 1 1
-1 0 1 3 4 5

Figure 4.13: Synthetic track with two different model errors generated to test the EM algorithm at each time
step

Constant Velocity
The constant velocity model assumes the aircraft is flying in a straight line with no

acceleration applied. Here, we ran the EM algorithm for 10 iterations instead of 100,

because error covariances stabilizes around the true value using 10 or less iterations.

Q Locations (m)

10

r r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step t

Figure 4.14: Best 0, ando,, after 10 EM iterations at each time t using CV Kalman filter

76

Using the history window method helped the error estimator to track the error as soon as
the aircraft changed its direction. As can be seen in figure 4.14, between the time steps

1 <t <500 the uncertainties in the x and y locations were originally 30m and after
running the EM algorithm 10 times at each time t we see that the error estimation tool
indeed estimates approximately the true. Also when 500 < t < 600 and 1000 <t < 1600,
the aircraft location errors increased from approximately 30 to around 60 which they

originally were when we generated the true track.

Constant Acceleration

The constant acceleration model is being modeled as flying in either straight line or
turning as long as there is an amount of acceleration applied during the flight. Here we use
the same track in figure 4.13 to test our error estimation tool with CA Kalman filter in figure

4.14:

Q Locations (m)

0 r r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step t

Figure 4.15: Best 0,,and o, after 10 EM iterations at each time t using CA Kalman filter

77

We can see that CA model also presents good estimation of the true error covariance during
the whole flight. When the location uncertainty increases between 500 and 600 and
between 1000 and 1600 in the true error covariance, the error estimation tool detects that

and set the oy, closer to 60.

Now that we tested on synthetic track and were able to find the true errors in the x and y

locations, we can now learn real tracks which we will present in the next section.

4.4 Testing on Real Tracks

For the real tracks we do not have any information regarding the amount of errors in
the track for the observation system (radar) and the state system. Therefore, we applied the
learning method to find out what are the typical amounts of errors in a sample of real
tracks. We randomly selected 10 real tracks that are straight line and another 10 real tracks
that have turns and learned their errors using the whole track learning method. In figures

4.16 and 4.17 we show these errors for the straight lines and the turning tracks respectively:

78

R (meters)

Q - Locations - (meters)

Q - Velocities - (meters per seconds)

Observations error covaiance matrix R for 10 different curvy tracks
60
T T T T T T T T

1 2 3 4 5 6 7 8 9 10

Model error covaiance matrix Q for 10 different curvy tracks, Q locations

50 [[[U [[U
q
450 x
—a,
400 L

Tracks

Model error covaiance matrix Q for 10 different curvy tracks, Q velocities
T T T K T T T T

qxvelocity

3.5~ o quelocity

250 i

o

Tracks

Figure 4.16: Learning the errors for 10 real tracks which are flying in a straight line

79

Observations error covaiance matrix R for 10 different curvy tracks
45

T T T T T T T

R (meters)

Tracks
Model error covaiance matrix Q for 10 different curvy tracks, Q locations
60 3 T 3 3 3 3 C L
qX
— 9y
@
(7} -
°
E
@
2 i
]
®
[+
o
- -
(¢}
8 9 10
Tracks
Model error covaiance matrix Q for 10 different curvy tracks, Q velocities
18 3 L 3 3 3 C T 18
/ q,velocity
16L ————qvelocity ||

Q - Velocities - (meters per seconds)
o
)
1

6 r r r r r r r
1 2 3 4 5 6 7 8 9 10

Tracks

Figure 4.17: Learning the errors for 10 real tracks which are flying in a turning mode

80

We learn from these figures, that the average observation error p is approximately 15m,

152 0

0 152] through out

therefore, we will fix our observation error covariance to be R = [

this research. In the next section we will use the learning at each time step method with
both Kalman filters and test the probability of infringement methods we discussed in the

previous chapter.

4.4.1 Constant velocity
We test our error estimation tool using this model and then estimate the probability of

infringement given a 1 and 5 steps ahead predictions.

1-Step Prediction Learning
We have seen that the typical amount of error for the observation system (radar) was

around 15m. We will use this error for the observation and fix it since the radar’s error
known to be almost constant. In figure 4.18, we applied the CV Kalman filter to a sample

track and learned the model error covariance at each time step.

x 10
255 — Observations 7
Estimate
254+ .
Predictions
2538 Smoothed 4
252+ -
o 2510 R
.
=
t 25F R
=

249

245

247

4.96 4.93 5 5.02
Easting w10

49 492 4.94

Figure 4.18: Real track after using CV model online learning

81

Figure 4.19 shows the model errors after we ran 30 EM iterations on the above track using

CV model.

Q Locations (m)

[r r [[
0 50 100 150 200 250 300 350
Time step t

Figure 4.19: g,.and g, after 20 EM iterations at each time step using the CV model

Notice in figure 4.19 that the location errors increase during the turning mode where the
green vertical lines shows the locations on which the aircraft starts to turn, and since we are
using the 15 step history window it will give it a chance to decrease back when it is flying in

a straight line.

82

25 L T L L T T

20

15

Q velocities

—_
o

r r r r r
0 50 100 150 200 250 300 350
Time

Figure 4.20: g,,.and g,,,, after 20 EM iterations at each time step using the CV model

The uncertainties in the velocities shown in figure 4.20 increase because the aircraft is
accelerating at it turns which means the velocity is no longer a constant. In the previous
chapter, we mentioned the probability of infringement P(I) would be accurate if we can
make a good estimation of the model’s error. In figure 4.20, we show the track we used to

find the new P(I) using the CV model and learning the errors at each time step:

83

X 1El5

— Observations

256+ CAS boundary
Predictions
+ Predictions used calculate P(l)

254+
m 252F N
£ ™ 7 :
= gy :
= / Ny

25 L .) .;
. {i‘f /:///)

g L/,ﬁ'i"-'?”
S48) ‘-h—,.kr{._/ |

£

246 ’ 1

/
4

49 492 4.94 4.96 4.958 5 5.02
Easting « 10°

Figure 4.21: Partial real track showing the predictions which we will use to find their probability of
infringements

ey T T T
—8— MC Sampling
09 —+&— Shortest Distance
08 1
t07 1
£
5
206 1
£
E
S 05 1
Z o4 1
®
2
]
a

o
w

o
N

o

o

WSS =SS J - L‘EEBEEEEE%
20 25 30 35 40 45

0 5 10 15
Track point

Figure 4.22: The probability of infringement using MC sampling and the shortest distance method after
learning the errors for CV model

We can see in figure 4.21 that as the aircraft infringes the CAS boundary it gives a
probability of at least P(I) = 0.7 and for the points inside CAS the P(I) = 1 in figure 4.22.
We also calculated the probability of infringement using the whole track learning method

for the same partial track in figure 4.21 and compared figures 4.22 with figure 4.23, and

84

found out that even when the aircraft is inside the CAS it still did not give as high a
probability as in the each time step learning where it gave P(I) = 1.
07 ; ; ; ; ; . :

—8— MC Sampling
—&— Shortest Distance

o
(]
T

o o o
w =N (8]

Probability of Infringement

o
[(N]
T

1 1
25 40 45
Track point

Figure 4.23: Probability of infringement after learning one error for the whole track using the CV model

The reason that the P(I) in figure 4.23 are not high even when the aircraft is inside the CAS
is because there was one average error for the whole track which was large enough for the

system to assume that the aircraft could possibly be outside the CAS.

5-Step Prediction
Even though current CAIT warns ATCs when the infringement has already occurred,

predicting one step ahead (4 seconds) for an infringement is not enough to warn them.
Therefore, we want to predict more steps ahead such as 20 seconds and test the results by
calculating the RMSE between the predictions and the observations. For simplicity we will
use the track in figure 4.18 to show the prediction’s RMSE and their probability of

infringement.

85

T
Obsenvations
CAS Boundary

26 T T T

[State Estimate
+ 5 Step Predictions ||

Northing

[[[
5.03 5.04

2.44 L [[
4.96 4.97 4.98 4.99 5 .
Easting X 10°

Figure 4.24: 5 steps ahead prediction using the CV Kalman Filter. The green ellipses represent the 5th step
prediction's error covariance

Figure 4.24 shows state estimates (square) and their 5 step predictions (cross) where the
black dashed lines correspond to each state estimate’s prediction trajectory. As long as the
aircraft flies in a straight line, we can predict an accurate locations of it, however, when the
aircraft starts to change its direction the CV Kalman filter still predicts as if it was flying in a
straight line and therefore, gives inaccurate predictions. We used these predictions and

their error covariance (green ellipses) from figure 4.21 to calculate their probability using

both probability of infringement methods.

86

3 3 T
—F+— MC sampling
—+— Shortest Distance

Probability of Infringement - P(l)

.
25 30 35 45

Point in track

Figure 4.25: Probability of infringement for the 5th step predictions plotted in figure 4.24 using the CV
Kalman filter

Figure 4.25 shows that even if we predict 5 steps ahead, we still get the same probability of
infringement as using the 1 step ahead prediction which is more certain about the location.
This suggests we can predict the infringement 20 seconds in advance with minimal errors

where the RMSE for the 5 step predictions (red crosses) was 712m.

4.4.2 Constant acceleration
Here we will test our learning tool with the CA Kalman filter again using a real track and

then find the probability of infringement given 1 and 5 steps ahead predictions.

1-Step Prediction
Here we use the CA Kalman filter/smoother for tracking on the same track as in figure

4.18; we also learned it at each time step and plotted their errors in figure 4.26, 4.27 and

4.28:

87

250 3 3 3 T 3 T

200 | 4

150

Q locations

100

50

r r r r r
0 50 100 150 200 250 300 350
Time

Figure 4.26: 0,and a,, after 20 EM iterations at each time step using the CA model

Q velocities

r r r r r r
0 50 100 150 200 250 300 350
Time

Figure 4.27: g,,.and g,,,, after 20 EM iterations at each time step using the CA model

88

ax

o
ay

Q acceleration

r r r r r r
0 50 100 150 200 250 300 350
Time

Figure 4.28: g ,,and o, after 20 EM iterations at each time step using the CA model

The CA model takes into consideration the velocity’s uncertainty which we saw in figure
4.28. Also, notice in figure 4.27, the velocities’ uncertainty were decreased compared to the
velocities’ uncertainty in CV model in figure 4.20 because here the CA model assumes that
the velocity is not constant where as in the CV model when the aircraft changes its heading,
it is no longer certain where the aircraft will be therefore load all the errors in the velocities.
After learning the errors for the CA model, we then tested this model to find the P(I) using

each time step learning.

89

—&— MC Sampling
09t —— Shortest Distance

Probability of Infringement
(=] o o o
N w b n

o

=)
i)

40 45

[=)
|
o
)

S E
[}
[
[}
=1
[
o

Figure 4.29: The probability of infringement using MC sampling and the shortest distance method after
learning the errors using the CA model

Figure 4.29 shows the probability of infringement using the CA model after learning the
errors at each time step. The five points on the track which fell inside CAS hasa P(I) =1,
while the aircraft is turning this is when an acceleration is applied to leave CAS, the location
of the aircraft is predicted to be somewhere close to the true location therefore, gives

P(I) = 0.25 — 0.3 instead of 0.6 in the CV model.

o
o

—&— MC Sampling
—&— Shortest Distance

o
=)
T

Probability of Infringermnent
o o o o o
w = n o ~

o
¥)
T

01F

0 5 10) 15 20 25 30 35 40 45
Track point

Figure 4.30: Probability of infringement after learning one error for the whole track using the CA model

Figure 4.30 shows the probability of infringement for the CA model when we used one fixed

best error for the whole track. Again, here the probability of infringement is not equal to 1

90

when the aircraft is inside CAS because the one error for the whole track we found to be the

best, is large enough to assume that the aircraft could possibly be outside CAS.

5-Step Prediction
We show in figure 4.31 a partial track we used to find their 5-step predictions, calculate

their P(I) and their RMSE.

T
— Obsenations

CAS Boundary
O State Estimate

. \ + 5 Step Predictions
— 3

Northing

Figure 4.31: 5 steps ahead prediction using the CT Kalman Filter. The green ellipses represent the 5th step
prediction's error covariance

By comparing figures 4.31 and 4.24, it clearly shows that the CA Kalman filter predicts better
when the aircraft starts to turn as opposed to the CV Kalman filter which assumes that the
aircraft will always fly in a straight line. Also in figure 4.31, notice the prediction error
covariances (green ellipses) are larger than the CV prediction error covariances shown in
figure 4.24, the reason for this increase is that CA prediction error covariance includes
acceleration uncertainty added to the prediction location as appose to the CV location error
covariance where only the velocity’s uncertainty is added to the location. Again, we

estimate the P(I) given these predictions and their uncertainties shown in figure 4.32.

91

T T T T
—&— MC samplin
—F+— Shortest Distance

0.9

0.8

0.7

0.6

051

0.4

0.3

Probability of Infringement - P(1)

0.2

0.1

% 40 ‘ 45

Point in track

Figure 4.32: Probability of infringement for the 5th step predictions plotted in figure 4.22 using the CT
Kalman filter

Comparing figure 4.32 to figure 4.29 which is the P(I) for the 1-step ahead CA KF
prediction, we see that 5- step prediction probability of infringement is performing similar
to the 1-step model. This tells us that we are certain about the probability of infringement
20 seconds in advance as it is for the 4 seconds. Moreover, the aircraft was turning during
the infringement therefore, CA KF predicted better in terms of the locations which gave

RMSE=619m as opposed to the CV KF for which was RMSE=723m.

4.5 Conclusion

In this chapter, we proposed two models for tracking aircraft; the constant velocity
and the constant acceleration models. Each model works in parallel for any track and both
produce the optimal state estimate and error covariance. However each model performs
differently in terms of the state components and the amount of error in them. After
implementing these models, we learned their errors using the EM algorithm given the whole
track on synthetic tracks. We then extended this learning method so that it learns the

model’s error at each time step and then tested it on the synthetic tracks, knowing the

92

amount of true error for the track, and we succeeded in finding the approximately true
errors when we learned them at each time step using 20 EM iterations. After seeing the
results and how it can find the true errors of the model, we learned the models’ errors for
both models (CV and CA) given the whole track and found out approximately the amount of
errors in the observation and in the model. We fixed the amount of observation error to be
15m after learning it for several real tracks using N EM iterations. After running 20 EM
iterations using both models on the real track, we learned the amounts of uncertainties
present during flight time and notice that we were given a good estimation especially after
we tested the probability of infringement on both models. Since these errors were learned,
we were able to apply the probability of infringement methods to predict future
infringements more accurately from 4 to 20 seconds ahead. The Kalman filter performs
generally well when we predict one step ahead, but as we predict ahead in time the amount
of errors increase linearly, as a result, when we predict 5 steps ahead Kalman filter can
project the prediction slightly further away from observed location at that time. The CA

Kalman filter, however predicts closer to the observation than the CV model.

As we mentioned before each model performs well depending on the aircraft’s
behaviour at that time for example, the constant velocity works and predict future
infringements well as long as the aircraft flies in a straight line, and If so the amount of
errors will increase as we have seen in figure 4.14. As a result, we will review in the next
chapter a switching method where we will be able to use in order switch to the proper

model when appropriate.

93

5 Switching Kalman Filter

In chapter 4 we proposed two Kalman filters one for each model: Constant Velocity
and Constant Acceleration. We have seen that one Kalman filter can predict the locations of
the aircraft better than the other whenever the behaviour of that aircraft matches the
modeling assumptions of the respective Kalman filter. For instance, the CA Kalman filter
predicts better than the CV Kalman filter when the aircraft is turning but not in a straight
line. We need to make sure that our model is capable of predicting the locations more
accurately irrespective of whether the aircraft is accelerating or flying in a constant velocity
and whether this varies during flight. To do that we need a switching method that can assist
our model to switch to the appropriate Kalman filter when flight behaviour changes. In this
chapter, we first discuss the reasons behind developing a switching tool, then review the
Switching Kalman Filter (SKF) proposed by Murphy (2000), which we use in our research.
The switching Kalman filter is a model used to switch between two or more Kalman filters
which produces minimum RMSE of the future prediction. Given this model we will try to find
the probability of future infringement using the SKF. Finally, we will show several examples
of using the SKF on real tracks and compare its results to the use of the Kalman filters

separately.

94

5.1 Why The Switching Kalman Filter

The Kalman filter is an efficient tool for tracking and prediction when applied to linear
dynamical models as mentioned previously in Kalman Filters section 2.5 chapter 2. It uses
the previous state estimates to predict the future hidden state, when the next observation

becomes available the Kalman filter then correct the prediction and its uncertainty.

Suppose we have more than one model ™ = (8™, ™) each has its own distinct
parameters 8 = {4, H, Q, R} and initial values m, can we use one flexible Kalman filter for
these models? Yes we could but there is a downside to it, which is over fitting the errors.
Here we assume that we have one fixed parameters for the entire flight. This assumption
causes poor prediction, as a result inaccurate probability of future infringement. To clarify
this issue, suppose the Kalman filter tracks an aircraft shown in figure 5.1 which flies in a
constant velocity mode, it will perform well as long as the aircraft does not change the
direction of its motion. If it does, the Kalman filter will then result in bad estimations of the

errors and provides inaccurate predictions.

1 31 5 L L L L L L L]
1.31- i
)k
/.//"FV Y
1.305-) 0 /jgé‘_j i
ARG 4
1.3 \F\\ /f”f/ .
'“'ﬁx\\ sl
1.205}. NP i
o T —— Obsenvations
'.E 1.29]. + Filtered
o = . e
> s ‘ \ﬁt\ Prediction
1985 W \
1.28|-
1.275.
1.27 -
L L L L L

;
3.04 3.05 3.06 3.07 3.08 3.09
Easting

Figure 5.1: Constant Velocity Kalman Filter on a real aircraft track showing the increase of the error when

the aircraft turns. The aircraft starts flying in the bottom right.

Notice in figure 5.1 that the aircraft was moving initially in a straight line with a constant

velocity (lower right corner) then at some point it changes its direction or mode of flight to a

constant acceleration mode. When the aircraft was flying in a constant velocity, the

predictions are estimated with lower uncertainties or “prediction error covariance” as its
transits from one state estimate to another. However, when the acceleration was applied
during the turning mode, the Kalman filter starts its prediction phase given the previous
state which was in constant velocity mode therefore, assumes the aircraft is still flying in
straight line. The inaccuracies occur during the correction phase, when the Kalman filter has

observed a new location for the aircraft which turns out to be far away from the prediction,

as a result, the residual and its covariance will increase.

96

Northing

Clearly for this particular problem we need more than one Kalman filter or more flexible
model where each one deals with specific specific mode. In response to this we
implemented the two separate Kalman filters (CV and CA) in the previous chapter. Figure
5.2 shows both Kalman filter’s predictions and estimations. The CV Kalman filter assumes
the aircraft is flying in a straight line, therefore, always predicts the locations straight ahead.

The CA Kalman filter however, performs better than the CV model when an acceleration is

applied.
x 10° Tracking using CV Kalman Filter x 10° Tracking using CA Kalman filter
- T T T T T - : T T T T T
2.555 Obsenvations ~ - 2.555 .| —— Observations . B
+ Filtered + Filtered —
Predictions + Predictions B

2.55)- T

2.545

/
/
2.5451. /

25351 _/

253 %

Northing

2.54

2.535

2.53

+ A

_ I r I I I r r
5.015 5.02 4.99 4.995 5 5.005 501 ° 5.015 5.02
5 Easting X 10°

r r r
4.99 4.995 5 5.005 5.01
Easting X 10

Figure 5.2: After using two separate Kalman filters to track an aircraft, CV KFs (left) predicts further away

than the CA KF (right)

The prediction RMSE for the CA Kalman filter was 62m whereas the CV Kalman filter’s

prediction RMSE was 92m.

Given these Kalman filters we need to use the most appropriate one of the two which gives
lower prediction RMSE. As a result, these Kalman filters then have to switch at some point
whenever a specific model should be used as our most reliable tracker. This property of
switching distinguishes the SKFs from the default Kalman filter where it minimizes the root
mean squared error (RMSE) for the predictions when a sudden direction change occurs

during tracking.

97

5.2 Implementation

5.2.1 Objective
Our research objective is to find the probability of infringement P(I) in the future more
accurately using a SKF. We examined each KF separately and now we need to switch

between them when appropriate as in figure 5.3. The KF with the smaller prediction RMSE

will be our most reliable tracking tool at that time.

(& cv (&7 (6

X1 X Xe1 i1
Continuous
States
(unknown)
CA CA CA CA
xt—l xt xt+l xt+2
Continuous
Observations
(known)
Discrete
Switching St_1 St st+1 st+2

Nodes
(unknown)

Figure 5.3: Switching Kalman Filter process where two kalman filters run in parallel given the observations.

The KF which gave higher probability of the observation and lower RMSE is chosen by S = CV or CA

In figure 5.3, the shaded oval and square nodes correspond to the hidden state (calculated
in the Kalman filters) and the switching nodes (learned in the HMM chapter 2) respectively.
The most probable switching state sequence S defines which of the hidden states gave

higher probability of observation at any time ¢.

98

5.2.2 Switching Process
The switching process occurs after we find the most probable switching state given
the observation and the model. Switching nodes are assumed to be discrete and they are
either in CV or CA mode, meaning that at any time t the model is in either the CV or the CA
state. The optimal tool for learning these discrete states is the HMM reviewed in chapter 2.
The observation sequence that we will use in the HMM is the probability of the error we

calculate in the Kalman filter:

P (etlre,Je) = N (etlre,Je)

where 7 is the residual which is the difference between the observation and the prediction

at time t and J is the residual covariance.

We have also seen in chapter 2 that the HMM solves the three basic problems where it
produces the outputs a, B, where a-f is the probability that a specific model generated the
observations and y is the maximum likelihood of being in a specific state S. The key idea in
the SKF’s is to pick the Kalman filter which gives lower RMSE in the predictions, In order to
determine that, we need to find y the maximum likelihood of being in state CV or CA in the
future. We use this probability to weight our model’s error covariance matrix Q inside the
error estimator tool (M-step: learning phase). Algorithm 5.1, shows the modified version of

this learning process:

Algorithm 5.1: (Q[",R") = ErrorEstimation(Z, X, P, PP,t, th)

Require: Z
Require: X
Require: P

Require: PP
Require: W/

m=0or1l
D,ELF=0
t=1

R=0
HistWindow=15

if t <= HistWindow then
N=t¢t
t=2
else
N = HistWindow+2
t = t — HistWindow
end if

whilet < N do

Observation matrix

Smoothed states matrix
Smoothed error covariance
matrix

Smoothed error covariance
matrix between time t-1 and t-2

Weight given by the HMM for
each mode where W™ = y™
Flight mode CV=0, CA=1

History window of 15 time steps
back

R= R+th [(Zt - Hmi;:n)(zt - Hmiin)’ + (Hm‘lsthm,)}

t=t+1
end while

RP = s
(e W)

Whilet < N

D=D+ th(ft—1ft—1’ + Pt—l)

E =E+W™(%%,_,' + PP,)
F =F + WM(%.%' + P,)
t=t+1

end while

_ (F—EA' — AE' — ADA")

Q"

return Q[*, R{"

E WM

Observation error covariance
re-estimation

Model error covariance re-
estimation

100

This version of learning the model’s error is analogous to the original learning tool used in
the KF error estimator tool we have seen in chapter 4, except here we have weighted the
equations using W™. The overall process of Filtering, smoothing and learning are presented

in figure 5.4:

. Probability of the .
Kalman Filter innovation Kalman Filter
cv CA
Smoother Smoother
cv CA
Switching Kalman
Smoothed CV States Filters Smoothed CA State
(HMM)
Weight CV Weight CA
Error
Estimation

ch l Qca

Re-estimated weighted Parameters

Figure 5.4: Switching Kalman filters process
Figure 5.4 shows the optimal filtering process which goes as following:
Filtering/smoothing:

1. Both Kalman filters state estimates and parameters are initialized to zero

2. The filters then predict using the previous state estimate or zero if no information of
the previous state estimate is available.

3. The time increments and the Kalman filters receive a new observation from the

radar. The filters calculate the innovation that is the difference between the

101

prediction and observation and finds its covariance, the average error for the
prediction and the observation, these are essential to find y in the HMM.

4. The optimal state estimates and their covariance are then the outputs of the Kalman
filters.

5. The state estimates are then smoothed in the Kalman smoother, to filter out any

additional noise. The smoothed estimates are crucial for learning the parameters.

Learning (switching state/new parameters):

1. The HMM will use the probability of the innovation calculated in the KFs to find the
maximum likelihood of state at time t gamma y;

2. The smoothed estimates from the Kalman smoother along with the weights y; from

the HMM are used to re-estimate the Kalman filters’ parameters (Q{*, R(").

We iterate through this process until the radar is no longer observing the aircraft.

102

Algorithm 5.2 shows the optimal prediction and filtering process:

Algorithm 5.2: Overall Process of the SKF Algorithm

Require:
Require:
Require:
Require:
Require:
Require:
X1 = 741
P, = HRH'

iters =0
Maxlterations= 100

m = number of models
fort=2to N

ZIT > ION

While iters < Maxlterations do
(f(t) 13')_(t; ﬁl L(t:v) = _
FiltErCV(_f(t_l, P_1,X, P, Q¢Y, Rey, Hevy Acys ©)
(f(t) PI)_(t; P; L(t:t) = _
FilterCA(X¢_1, Pi_1, X, P, ng, Rit, Heto Acy ©)
(%1, P_1, PP) = SmootherCV (&, P, R, Hey, Acy, t)

(%1, P_1, PP) = SmootherCA(X, P, R, Hep, Ace, 1)

(1.6, By.00Vy.0) = HMM(LY, L, ©)
Wl:t = Vlzt

Observations matrix

State error covariance
Observation error covariance
State transition matrix
Observation transition matrix
Total Length of journey time step

E-step
Kalman Filtering
Constant Velocity Kalman Filter

Constant Acceleration Kalman Filter

Kalman Smoothing:
Constant Velocity Kalman Smoother

Constant acceleration Kalman Smoother
Switching process:

calculating maximum likelihood of being in
specific state m at time t

M- step:

(Q™ R™) = ErrorEstimation((SZt_l,ﬁ_l, p‘pt)m'wtm) Re-Estimating Models’ errors using the

iters = iters + 1
end while
Next t

weight W,

103

5.3 Testing

1- Step Prediction
We tested the SKF on a sample of real tracks and calculated the probability of being in

state CA or CV at any time t. We also calculated the 1- Step ahead prediction RMSE using
the SKF, CV Kalman filter and CA Kalman filter. Figure 5.5 shows 4 sample tracks where the
observations marked with (*) are when the observations probability is higher in mode CA

than it is in mode CV:
P(z.|S; = CA) > P(z/S; = CV)

x 10

16 T T T T T T T

Observations
150 + P(Zs=CA) > P(Zs=CV)

Northing

0.9 r r r r r r oo =l
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

Easting x 10°

27

Observations
* P(Zls=CA) > P(Z|s=CV)

25F

245

24 . 1 1 L L |
4.94 4.96 498 5 5.02 5.04 5.06 5.08

Easting «10°

104

225 T T T T T
Observations
* P(Z|s=CA) » P(Z|s=CV)
22F B
215+ B
o=
£
£
=
o
=
21F B
205 / B
2 1 1 1 1 1
585 555 56 565 57 575 58
Easting « 105
x 10°
2.6
2.58 | i
2.56 | i
2.54 1 i
2
£ 2521 B
o
z
250 i
2.48 L i
246 i
2.44 r r r r r r

r c
495 496 497 498 4.9 5 5.01 5.02 5.03 5.04
Easting x 10°

Figure 5.5: Real tracks showing in (*) the observations which have higher probability in CA than the CV
model

Whenever there is acceleration, the CA model has a higher probability than the CV model
which tells us that when to switch to CA model. The rest of the observations that are not
marked in (*) are the observations when their probability are higher in CV mode than it is in
the CA mode. Given these tracks in figure 5.5, we calculated their prediction RMSE before

using the SKF and after then we compared the results which are listed in table 5.1:

105

Table 5.1: RMSEs for tracks in figure 5.5 for the two models before then after using the SKF

Track Model RMSE
Prediction (m)
1** Track cv 133
CA 151
SKF 128
2" Track cv 73
CA 82
SKF 65
3" track cv 65.1
CA 75.9
SKF 56.8
4" track cv 84
CA 99
SKF 74

We noticed from table 5.1 that 1-step ahead prediction RMSE for the SKF performs better
than CV or CA Kalman filters. We used the same tracks in table 5.1 and an additional 10 real
tracks, where each of which have at least 300 time steps and calculated their prediction
error (difference between the observation and the prediction at each time step) instead of
taking the averaged error over all tracks. To determine which of the three models: the SKF,
CV KF and the CA KF is significantly better than the other, we used the signed Wilcoxon rank
test which performs a paired two-sided signed rank test of the null hypothesis that the
model errors in each model come from the same continuous, symmetric distribution with
zero median, against the alternative that they do not come from the same distribution
(Lowry, 2000). In order to reject or accept the null hypothesis, we will test the p value
generated by this test which is the probability that the error came from the same
distribution against the significant value which is @ = 5%. If the p < a, we will reject the

null hypothesis otherwise accept it.

106

We applied the signed wilcoxon rank test on a large matrix where each row corresponds to
a time step error (difference between the prediction and the observation) for all 14 tracks
and the columns correspond to the three models: the SKF, CV KF and CA KF. In order to
assure the independency between time steps (samples), we applied the test on every 20™

row (i.e. a separation of 80 seconds) .

Figures 5.6, 5.7 and 5.8 show plots of each 20" time step error for one model against the

error at the same time step for another model:

400 T T T 3 3 T 3

350 |- 4

300 |- -

250 - 4

8
w
L 200[i
X
3
-
150 |-] . ,
(] . “
00l T T
L . 4
. s ® () [(]
§ o™
50 L .'.. J
. (]
0 r r r r r r r
0 50 100 150 200 250 300 350 400

SKF Error

Figure 5.6: 1-step ahead prediction errors using SKF, CV Kalman filter where it appears that the SKF
performs better compared to the CV KF.

107

400 T T T T T T T

350 . i

300 - -

250 |- i

8
= .
W 200f . * |
X .
<< .
© 50| . ° .
. .
100 |- “r i
L
e . o * "
)
50 - e . i
o .
¢
0 r r r r r r r
0 50 100 150 200 250 300 350 400
SKF Error

Figure 5.7: 1-step ahead prediction errors using SKF, CA Kalman filter where it appears that the SKF performs
better compared to the CA KF.

400 T T T T T T T

350 - . i

250 - -

200 |- . . i

CA KF Error

150 |- .

100 -

r r r r r r r
0 50 100 150 200 250 300 350 400
CV KF Error

Figure 5.8: 1-step ahead prediction errors using CV KF and CA Kalman filter where it we are unclear of which
one of the KFs is better than the other.

Figures 5.6 and 5.7 show that the SKF is significantly better than the CV and CA KFs where
the propensity of the errors is higher or equal in both KFs than it is in the SKF. The signed
wilcoxon rank test made on each pair of models errors returned p (sxr,cv k)= 1.3109e-006
and Pskr,ca kr)=1.2171e-011 which tells us to reject the null hypothesis that these errors

come from the same the distribution. Figure 5.8 , is not clear visually whether one KF is

108

better than the other however, the signed wilcoxon rank test returned a pcy kr,ca kr) =

0.0188 therefore, there is a significant difference at the 5% level.

Since one step ahead prediction is not enough for future warning, we therefore, used
the SKF to predict 5 steps ahead instead of one which allows us to predict future change;

this will permit us with better estimates of future CAS infringements.

5- Step Prediction
Given the both Kalman filters and observation at time step t, we calculate the probability

of that observation given the models. The Kalman filter with the higher probability will tell
us if there will be a switch at time step t + 1, using the same probability we will extend it to
be able to switch at time t + 5 given the prediction at time t. For example, if at time step t
we are in state CV model and the probability of the observation at time t + 1 is higher for
the CV Kalman filter, then the probability of being in state CV at time step t + 5 is higher for
the CV than the CA. In this section, we will use the signed Wilcoxon rank test to test which
of the three models is performing better than the other when predicting 5 steps ahead.
Using the same tracks as in the previous section and predicting 5 steps ahead, we generated
a similar matrix as in the 1-step ahead prediction error on which to apply the test but this
time, the errors are the difference between the 5 step ahead prediction and the observation
at time t + 5. Again to assure the independency between the samples, we applied the test
on every 20" time steps. Figures 5.9, 5.10 and 5.11 show plots the 5t step ahead prediction
error for one model against the errors at the same time step for another model where the
SKF appears to be significantly better than both CV KF and CA KF as shown in figures 5.9-
5.10 whereas in figure 5.11 it is unclear which whether either of the CV or CA KFs are

actually different than each other in performance:

109

1800 3 3 3 3 3 T 3 3

1600 - i
L]
1400 L . .«
L]
L]
1200 |- ° « . .
5 L]
2 1000]- N . i
m . .
L] L]
< 800} . i
O L] L]
L]
600 |- « oo i
. o ® .
400 - O i
. [}
200 i

0 r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800
SKF Error

Figure 5.9: 5-steps ahead prediction errors for each time step of all 14 tracks using the SKF and CV where it
is appears that the SKF is better than the CV KF.

3500 T T T T T T

3000 . -

2500 - -

[]
S 2000 . i
i []
& .
< 15001 -
O . o~ « ®
. .
1000 |- . -
. I. .~: . T4 -
X
[
500 oSrppl® o e i
° .
[] (]
. L)
0 %e r r r r r r
0 500 1000 1500 2000 2500 3000 3500

SKF Error

Figure 5.10: 5-steps ahead prediction errors for each time step of all 14 tracks using the SKF and CA where it
is appears that the SKF is also better than the CA KF.

110

3500 L L L L L L

3000 -~] -

2500 |- -

S 2000 | . -
w .
v * .
< 1500 -
O . ”° .
L
< o
1000 - iy i
L] .. .‘: . r .~ [] B
o
- ’ .
500 .=.. l."':' "t . i
® '; LI I
0 LI r r r r r
0 500 1000 1500 2000 2500 3000 3500

CV KF Error

Figure 5.11: 5-steps ahead prediction errors for each time step of all 14 tracks using the CV and CA KFs
where it is unclear whether one KF is better than the other.

Figures 5.9 and 5.10 show that the propensity of errors are also higher or equal in the CV
and CA KFs section of the plot than it is in SKF. Here the signed wilcoxon rank test made on
each pair of models 5" step ahead errors returned P (skF,cv kr)= 9-1838e-005 and

P(skr.ca kF)=1.7169e-006 which tells us to reject the null hypothesis that these errors come
from the same the distribution. Figure 5.11 again is not clear visually whether one KF is
better than the other however, its signed wilcoxon rank test returned a pcy kr,ca kr) =

0.0423 therefore, there is a significant difference at the 5% level.

Since we are interested in finding the probability of infringement at time t + 5, in figure
5.12, we show a partial track which we will use to estimate this probability. The SKF
switches between the CV and CA Kalman filter’s predictions at each time step when
appropriate. Predictions with smaller ellipses or error covariances correspond to the CV

Kalman filter and the large ellipses correspond to the CA Kalman filter.

111

T
—+— Observations
O State estimate
CAS Boundary
256 5th Step Prediction [

2,55

2,541

Northing

2,53

Easting x10°

Figure 5.12: 5th step predictions and their error covariances using the SKF

L L
—&— MC sampling
4 Hybrid Shortest Distance -

Probability of Infringement P(|t+5)
o o o o o o
n w ES 2) ~N
T T T T T T

o
o
T

35
Point on Track

Figure 5.13: Probability of infringement using the Hybrid method for the 5th steps ahead predictions - SKF

We calculated the probability of infringement for the 5t step predictions marked in (+) in
figure 5.12 and plotted their probabilities in figure 5.13. The probability of infringement

using the MC sampling plotted in figure 5.13 correspond to the whole predictions marked in

112

green crosses. We used the hybrid method to find the probability of infringement using the
conditions we proposed in chapter 3. Since the predictions were not close to the CAS corner
and did not exceed the threshold given by condition 2, we estimated the P(I;,5) using the
shortest distance which is marked in (*). By looking at these probabilities and the partial
track in figure 5.12 we see that there were 6 observations showing that the aircraft has

infringed CAS boundary thus the probabilities does give estimate of P(I;,5) =0.9.

5.4 Conclusion

We have reviewed the method of switching between Kalman filters, where the
switching process occurs when one Kalman filter gives less RMSE for the prediction than the
other Kalman filter. We determined that by finding the probability of the observation given
the model, the model which produces the highest probability is chosen one at that time. We
also modified the error estimator tool used in the previous chapter to include the weights
given by the HMM. After implementing the SKF, we extended it so it can predict 5 steps
ahead instead of one. We then found the probability of infringement using the hybrid
method. The SKF was found to give superior 1 and 5 steps ahead predictions of the aircraft
location, permitting better estimates of the probability of CAS infringement to be made. The
SKF gave the minimum prediction error compared to the CV and CA Kalman filters shown in
figures 5.6-5.11. We then applied the hybrid method to find the probability of infringement
after 5 steps ahead which gave better results shown in figure 5.13 instead of using one

Kalman filter for the whole track.

113

6 Conclusion

In this chapter, we summarise our research objective, the methods we used and their

results after using synthetic and real tracks.

6.1 Summary

Controlled airspace infringements are a major safety threat to air traffic controllers and
pilots. These threats occur for numerous of reasons, a common one is that pilots tend to
misunderstand the ATC’s clearance and think it was intended for him/her. Therefore, it was
essential to develop a model which alerts ATCs for any occurring infringements. However,
the downside of this system is that it only raises a warning to the ATC if the aircraft has
already infringed the CAS. Developing a probabilistic model which predicts future
infringements can be very helpful and effective if it can increase the warning time and
reduces the safety threat ATCs face every day. As a result, a research study was conducted
to be able to predict future infringements and assign a probability of infringement to them
P(I), this method is called the shortest distance method. We extended this study by
removing the assumption that CAS boundary can only be a straight line in order to find the
P(I) better reflecting the real life situation. We developed a hybrid method which uses
Monte Carlo sampling in addition to the shortest distance method to find the probability of
future infringements. The reason for combining the two methods is because MC sampling
was an effective way of finding the P(I) when the prediction is near the CAS boundary
corner. However, because the MC sampling can be slow, we can use the shortest distance
method almost all the time as long as it is away from CAS corner which is defined by a
flexible threshold. Another advantage of using the hybrid method aside from effectively

finding P(I) in the future, is that we only need a prediction and its error covariance to find

114

P(I). Since aircraft flying within uncontrolled airspace tend to change their directions and
fly in unexpected flight path, the uncertainty about their future locations and their error
covariance increases at each time step. Therefore, we were able to predict and implement
an online learning for the error covariance using the EM algorithm: the E-step we used the
Kalman filter and smoother to predict the location and its error covariance and the M- step
where we re-estimated the Kalman filter’s error covariances (R, Q). We test our Kalman
filter, smoother and error covariance estimation tool on synthetic tracks where we know
their true error covariances, and found out that we can approximately estimate their true
error covariance at each time step using a small number of EM iterations. Again, because
the aircraft can change directions and learning their errors is not enough, we also needed to
predict their locations more accurately. By having one flexible Kalman filter, it could give
inaccurate predictions, as a result we implemented two Kalman filters which can predict one
and 5 steps ahead: CV Kalman filter (aircraft flies in a straight line) and the CA Kalman filter
(aircraft is turning or accelerating). Having both Kalman filters with their own error
estimation tool running in parallel, we needed a model which can switch between the
Kalman filters whenever appropriate. As a result, we implemented the switching Kalman
filter that can switch between CV and CA Kalman filters effectively. After comparing all three
models, we find that the SKF can be best between CV and CA with little overlapping of the

predictions’ RMSEs between the SKF and CV Kalman filter.

Since most aircraft within UCAS are not flying to a specific flight path and the pilot can
change their intentions at any time in the future, the model is limited on how far it can
predict locations in the future and be certain about it because the amount of prediction’s

uncertainty increases linearly as we predict ahead in time.

115

6.2 Future Work Recommendation

The probability of future infringements P(I) alone cannot inform us if the aircraft will
indeed infringe the CAS. Our model needs to produce a correct decision whether or not an
infringement will occur in the future. This decision needs to be enforced more by assigning
weights to the P(I) we calculated in our model, such weights can be like the time of the
day, is it holiday? Is the weather in UCAS good or bad for flying under visual flight rules.
These weights can change our decision about whether an infringement could occur or not.
One recommended method we see that can be used on how to assign weights to the P(1)

would be multilayer neural networks.

Finally, a probabilistic controlled airspace infringement tool can increase airspace safety
and decrease the workload on ATC by detecting them in advance which allows them to
resolve any possible future conflict or mid-air collision. We look forward to seeing our

models incorporated in current controlled airspace infringement tools.

116

7 Bibliography

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39 (1),

1-38.

Erzberger, H., Paielli, R., Isaacson, D., & Eshow, M. (1997). 'Conflict Detection and Resolution

In the Presence of Prediction Error'. Moffett Field.

Ghahramani, Z., & Roweis, S. (1998). A Unifying Review of Linear Gaussian Models. 11 .

London: University College London.

Hayward, R., & Howell, R. (2008). Proposed Specification of Algorithms for an Enhanced for

Short Term Conflict Alert. Operational Analysis Department (5).

Kuchar, J. K., & Yang, L. C. (1997). Survey of Conflict Detection and Resolution Modeling

Methods. Navigation, and Control Conference, (pp. 11-13). New Orleans.

Lowry, R. (2000, 13-Decemeber). The Wilcoxon Signed-Rank Test. From

http://faculty.vassar.edu/lowry/PDF/c12a.pdf

Mcdonald-Wallis, K. (2009). An Approach into the Probabilistic Prediction of the Movement

of Uncontrolled Aircraft to Improve UK Aviation Safety. MSc. Dissertation .
Murphy, K. (1998). Switching Kalman Filter. DEC/Compaq Cambridge Research Labs.

Paielli, R., & Erzberger, H. (1997). Conflict probability Estimation for Free Flight. Journal of

Guidance, Control and Dynamics , 20 (3), 588-596.

117

Prandini, M., & Watkins, O. (2005). Probabilistic Aircraft Conflict Detection. Technical

Report.

Prandini, M., Hu, J., Lygeros, J., & Sastry, S. (2000). A probabilistic approach to aircraft

conflict detection. Intelligent Transportation Systems, 1 (4), 199 - 220.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, (pp. 257--286).

Reckhouse, W. (2010, 10 22). Optimisation of Short Term Conflict Alert Safety Related

Systems. Exeter.

Yang, L. C., & J. K. Kuchar. (1997). Prototype Conflict Alerting Logic for Free Flight. AIAA

Journal of Guidance , 20 (4).

Yang, L., & Kuchar, J. (1998). Using Intent Information in Probabilistic Conflict Analysis.

Navigation, and Control Conference, (pp. 10-12). Boston.

Yu, B. M., Shenoy, V. k., & Sahani, M. (2004, October 19). Derivation of Kalman Filtering and

Smoothing Equations .

118

